Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Принципы ведения гломерулярных болезней: итоги согласительной конференции Kidney disease: improving global outcomes (KDIGO). Часть 1

https://doi.org/10.36485/1561-6274-2020-24-2-22-41

Полный текст:

Аннотация

По инициативе Kidney Disease: Improving Global Outcomes (KDIGO) в ноябре 2017 года была организована конференция по противоречивым вопросам в ведении гломерулярных болезней. Работа конференции была сфокусирована на рекомендациях KDIGO 2012 года и преследовала цель – определить новые моменты в понимании номенклатуры, патогенеза, диагностики и, в частности, лечения гломерулярной патологии. Участники пришли к консенсусу в том, что большинство основных рекомендаций, в особенности касающихся лечения, должны быть пересмотрены соответствующей рабочей группой. Данная часть отчета охватывает общие принципы ведения гломерулярных болезней, IgA-нефропатии и мембранозной нефропатии.

Об авторах

Юрген Флёге
Рейнско-Вестфальский технический университет г. Аахена
Германия

Подразделение Нефрологии и клинической Иммунологии

Пауэлсштрассе 30, 52057 Аахен



Шон Дж. Барбоур
Региональное Почечное Агентство Британской Колумбии; Университет Британской Колумбии; Больница Св. Павла
Канада

Отделение Нефрологии Университета Британской Колумбии

Центр оценки здоровья и результатов исследований Больницы Св. Павла

Ванкувер, Британская Колумбия



Дэниел К. Каттран
Университетская сеть здравоохранения
Канада

Главный научно-исследовательский институт Торонто

Торонто, Онтарио



Джонатан Дж. Хоган
Университет Пенсильвании
Соединённые Штаты Америки

Отделение Нефрологии

Филадельфия, Пенсильвания



Патрик Х. Начман
Университет Миннесоты
Соединённые Штаты Америки

Отделение болезней почек и гипертензии

Миннеаполис, Миннесота



Сидней С.В. Танг
Университет Гонконга; Больница имени Королевы Марии
Китай

Кафедра Медицины Университета Гонконга

Гонконг



Джек Ф.М. Ветцелс
Университетский медицинский центр Radboud
Нидерланды

Кафедра Нефрологии

Неймеген



Майкл Чеунг
KDIGO
Бельгия
Брюссель


Дэвид К. Вилер
Университетский колледж Лондона
Великобритания
Лондон


Вольфганг К. Винкелмайер
Медицинский колледж Бэйлор
Соединённые Штаты Америки

Сельцманский институт здоровья почек, Секция Нефрологии, Кафедра медицины

Хьюстон, Техас



Брэд Х. Ровин
Университет штата Огайо
Соединённые Штаты Америки

Отделение Нефрологии, медицинский центр Уэкснер

12-я Вест-Авеню, 395, первый этаж, Колумбуя, Огайо 43210



Список литературы

1. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl 2012;2:139–274. doi: 10.1038/kisup.2012.9

2. Sethi S, D’Agati VD, Nast CC et al. A proposal for standardized grading of chronic changes in native kidney biopsy specimens. Kidney Int 2017;91:787–789. doi: 10.1016/j.kint.2017.01.002

3. D’Agati VD, Mengel M. The rise of renal pathology in nephrology: structure illuminates function. Am J Kidney Dis 2013;61:10161025. doi: 10.1053/j.ajkd.2012.12.019

4. Larsen CP, Messias NC, Silva FG et al. Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Mod Pathol 2013;26:709–715. doi: 10.1038/modpathol.2012.207

5. Dai H, Zhang H, He Y. Diagnostic accuracy of PLA2R autoantibodies and glomerular staining for the differentiation of idiopathic and secondary membranous nephropathy: an updated meta-analysis. Sci Rep 2015;5:8803. doi: 10.1038/srep08803

6. Hodgin JB, Bitzer M, Wickman L et al. Glomerular aging and focal global glomerulosclerosis: a podometric perspective. J Am Soc Nephrol 2015;26:3162–3178. doi: 10.1681/ASN.2014080752

7. Beck LH Jr, Fervenza FC, Beck DM et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 2011;22:1543–1550. doi: 10.1681/ASN.2010111125

8. De Vriese AS, Glassock RJ, Nath KA et al. A proposal for a serologybased approach to membranous nephropathy. J Am Soc Nephrol 2017;28:421–430. doi: 10.1681/ASN.2016070776

9. Sethi S, Glassock RJ, Fervenza FC. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. Nephrol Dial Transplant 2015;30:375–384. doi: 10.1093/ndt/gfu035

10. Hogan MC, Reich HN, Nelson PJ et al. The relatively poor correlation between random and 24-hour urine protein excretion in patients with biopsy-proven glomerular diseases. Kidney Int 2016;90:1080–1089. doi: 10.1016/j.kint.2016.06.020

11. Reich HN, Troyanov S, Scholey JW et al. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 2007;18:3177–3183. doi: 10.1681/ASN.2007050526

12. Lv J, Zhang H, Wong MG et al. Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 2017;318:432–442. doi: 10.1001/jama.2017.9362

13. Hebert LA, Birmingham DJ, Shidham G et al. Random spot urine protein/creatinine ratio is unreliable for estimating 24-hour proteinuria in individual systemic lupus erythematosus nephritis patients. Nephron Clin Pract 2009;113:c177–c182. doi: 10.1159/000232599

14. Rizk DV, Meier D, Sandoval RM et al. A novel method for rapid bedside measurement of GFR. J Am Soc Nephrol 2018;29:1609–1613. doi: 10.1681/ASN.2018020160

15. Ix JH, Wassel CL, Stevens LA et al. Equations to estimate creatinine excretion rate: the CKD epidemiology collaboration. Clin J Am Soc Nephrol 2011;6:184–191. doi: 10.2215/CJN.05030610

16. Gao A, Cachat F, Faouzi M et al. Comparison of the glomerular filtration rate in children by the new revised Schwartz formula and a new generalized formula. Kidney Int 2013;83:524–530

17. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 2009;4: 1832–1843. doi: 10.2215/CJN.01640309

18. Branten AJ, Vervoort G, Wetzels JF. Serum creatinine is a poor marker of GFR in nephrotic syndrome. Nephrol Dial Transplant 2005;20:707–711. doi: 10.1093/ndt/gfh719

19. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 2009;20:2305–2313. doi: 10.1681/ASN.2009020171

20. Inker LA, Tonelli M, Hemmelgarn BR, et al. Comparison of concurrent complications of CKD by 2 risk categorization systems. Am J Kidney Dis 2012;59:372–381. doi: 10.1053/j. ajkd.2011.09.021

21. Tang LL, Liu A, Chen Z et al. Nonparametric ROC summary statistics for correlated diagnostic marker data. Stat Med 2013; 32:2209–2220. doi: 10.1002/sim.5654

22. Geetha D, Seo P, Ellis C et al. Persistent or new onset microscopic hematuria in patients with small vessel vasculitis in remission: findings on renal biopsy. J Rheumatol 2012;39:1413–1417. doi: 10.3899/jrheum.111608

23. Sevillano AM, Gutierrez E, Yuste C et al. Remission of hematuria improves renal survival in IgA nephropathy. J Am Soc Nephrol 2017;28: 3089–3099. doi: 10.1681/ASN.2017010108

24. Levey AS, Inker LA, Matsushita K et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 2014;64:821–835. doi: 10.1053/j.ajkd.2014.07.030

25. Thompson A, Cattran DC, Blank M et al. Complete and partial remission as surrogate end points in membranous nephropathy. J Am Soc Nephrol 2015;26:2930–2937. doi: 10.1681/ASN.2015010091

26. Cattran DC, Kim ED, Reich H et al. Membranous nephropathy: quantifying remission duration on outcome. J Am Soc Nephrol 2017;28: 995–1003. doi: 10.1681/ASN.2015111262

27. Morrell GR, Zhang JL, Lee VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol 2017;28:2564–2570. doi: 10.1681/ASN.2016101089

28. Hebert LA, Wilmer WA, Falkenhain ME et al. Renoprotection: one or many therapies? Kidney Int 2001;59:1211–1226. doi: 10.1046/j.1523-1755.2001.0590041211.x

29. Bertram JF, Douglas-Denton RN, Diouf B et al. Human nephron number: implications for health and disease. Pediatr Nephrol 2011;26:1529–1533. doi: 10.1007/s00467-011-1843-8

30. Ricardo AC, Goh V, Chen J et al. Association of sleep duration, symptoms, and disorders with mortality in adults with chronic kidney disease. Kidney Int Rep 2017;2:866–873. doi: 10.1016/j.ekir.2017.05.002

31. Morales E, Valero MA, Leon M et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis 2003;41:319–327. doi: 10.1053/ajkd.2003.50039

32. Afshinnia F, Wilt TJ, Duval S et al. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol Dial Transplant 2010;25:1173–1183. doi: 10.1093/ndt/gfp640

33. Kittiskulnam P, Kanjanabuch T, Tangmanjitjaroen K et al. The beneficial effects of weight reduction in overweight patients with chronic proteinuric immunoglobulin a nephropathy: a randomized controlled trial. J Ren Nutr 2014;24:200–207. doi: 10.1053/j.jrn.2014.01.016

34. Cattran DC, Reich HN, Beanlands HJ et al. The impact of sex in primary glomerulonephritis. Nephrol Dial Transplant 2008;23: 2247–2253. doi: 10.1093/ndt/gfm919

35. Sampson MG, Hodgin JB, Kretzler M. Defining nephrotic syndrome from an integrative genomics perspective. Pediatr Nephrol 2015;30:51–63

36. Preston R, Stuart HM, Lennon R. Genetic testing in steroidresistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019;34(2):195–210. doi: 10.1007/s00467-017-3838-6

37. Agarwal R. Resistant hypertension and the neglected antihypertensive: sodium restriction. Nephrol Dial Transplant 2012;27:4041–4045. doi: 10.1093/ndt/gfs384

38. Bibbins-Domingo K, Chertow GM, Coxson PG et al. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 2010;362:590–599. doi: 10.1056/NEJMoa0907355

39. Voskamp PWM, Dekker FW, van Diepen M et al. Effect of dual compared to no or single renin-angiotensin system blockade on risk of renal replacement therapy or death in predialysis patients: PREPARE-2 study. J Am Soc Hypertens 2017;11:635–643. doi: 10.1016/j.jash.2017.07.006

40. Joseph JJ, Echouffo-Tcheugui JB, Kalyani RR et al. Aldosterone, renin, cardiovascular events, and all-cause mortality among African Americans: the Jackson Heart Study. JACC Heart Fail 2017;5:642–651. doi: 10.1016/j.jchf.2017.05.012

41. Petrykiv SI, Laverman GD, Persson F et al. Pooled analysis of multiple crossover trials to optimize individual therapy response to rennin-angiotensin-aldosterone system intervention. Clin J Am Soc Nephrol 2017;12:1804–1813. doi: 10.2215/CJN.00390117

42. Antlanger M, Bernhofer S, Kovarik JJ et al. Effects of direct renin inhibition versus angiotensin II receptor blockade on angiotensin profiles in nondiabetic chronic kidney disease. Ann Med 2017;49:525–533. doi: 10.1080/07853890.2017.1313447

43. Rajasekeran H, Reich HN, Hladunewich MA et al. Dapagliflozin in focal segmental glomerulosclerosis: a combined humanrodent pilot study. Am J Physiol Renal Physiol 2018;314:F412–F422. doi: 10.1152/ajprenal.00445.2017

44. Markossian T, Burge N, Ling B et al. Controversies regarding lipid management and statin use for cardiovascular risk reduction in patients with CKD. Am J Kidney Dis 2016;67:965–977. doi: 10.1053/j.ajkd.2015.12.030

45. Lee T, Derebail VK, Kshirsagar AV et al. Patients with primary membranous nephropathy are at high risk of cardiovascular events. Kidney Int 2016;89:1111–1118. doi: 10.1016/j.kint.2015.12.041

46. Sabatine MS, Giugliano RP, Keech AC et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376:1713–1722. doi: 10.1056/NEJMoa1615664

47. Kotur-Stevuljevic J, Peco-Antic A, Spasic S et al. Hyperlipidemia, oxidative stress, and intima media thickness in children with chronic kidney disease. Pediatr Nephrol 2013;28:295–303. doi: 10.1007/s00467-012-2323-5

48. Haynes R, Lewis D, Emberson J et al. Effects of lowering LDL cholesterol on progression of kidney disease. J Am Soc Nephrol 2014;25:1825–1833. doi: 10.1681/ASN.2013090965

49. Lee T, Biddle AK, Lionaki S et al. Personalized prophylactic anticoagulation decision analysis in patients with membranous nephropathy. Kidney Int 2014;85:1412–1420. doi: 10.1038/ki.2013.476

50. Barbour SJ, Greenwald A, Djurdjev O et al. Disease-specific risk of venous thromboembolic events is increased in idiopathic glomerulonephritis. Kidney Int 2012;81:190–195. doi: 10.1038/ki.2011.312

51. Stamellou E, Floege J. Novel oral anticoagulants in patients with chronic kidney disease and atrial fibrillation. Nephrol Dial Transplant 2018;33:1683–1689. doi: 10.1093/ndt/gfx322

52. Cholongitas E, Haidich AB, Apostolidou-Kiouti F et al. Hepatitis B virus reactivation in HBsAg-negative, anti-HBc-positive patients receiving immunosuppressive therapy: a systematic review. Ann Gastroenterol 2018;31:480–490. doi: 10.20524/aog.2018.0266

53. National Renal Complement Therapeutics Centre. Guidelines for the prevention of meningococcal disease in adult patients receiving eculizumab for the treatment of atypical haemolytic uraemic syndrome. Available at: http://www.atypicalhus.co.uk/wp-content/uploads/2017/07/Meningococcal-guidelines-adult1.pdf. Accessed April 17, 2018

54. Perkovic V, Agarwal R, Fioretto P et al. Management of patients with diabetes and CKD: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 2016;90:1175–1183. doi: 10.1016/j.kint.2016.09.010

55. Ayme S, Bockenhauer D, Day S et al. Common elements in rare kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2017;92:796–808. doi: 10.1016/j.kint.2017.06.018

56. Gadegbeku CA, Gipson DS, Holzman LB et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int 2013;83:749–756. doi: 10.1038/ki.2012.428

57. Ju W, Nair V, Smith S et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci Transl Med 2015;7:316ra193. doi: 10.1126/scitranslmed.aac7071

58. Boyd JK, Cheung CK, Molyneux K et al. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int 2012;81:833–843. doi: 10.1038/ki.2011.501

59. Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol 2018;33:763–777. doi: 10.1007/s00467-017-3699-z

60. Berthoux F, Suzuki H, Thibaudin L et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 2012;23:1579–1587. doi: 10.1681/ASN.2012010053

61. Yasutake J, Suzuki Y, Suzuki H et al. Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transplant 2015;30:1315-1321. doi: 10.1093/ndt/gfv221

62. Gharavi AG, Kiryluk K, Choi M et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 2011;43:321–327. doi: 10.1038/ng.787

63. Fellstrom BC, Barratt J, Cook H et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a doubleblind, randomised, placebo-controlled phase 2b trial. Lancet 2017;389:2117–2127. doi: 10.1016/S01406736(17)30550-0

64. Suzuki H, Suzuki Y, Narita I et al. Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol 2008;19:23842395. doi: 10.1681/ASN.2007121311

65. Niu D, Gao Y, Xie L et al. Genetic polymorphisms in TNFSF13 and FDX1 are associated with IgA nephropathy in the Han Chinese population. Hum Immunol 2015;76:831–835. doi: 10.1016/j.humimm.2015.09.044

66. McCarthy DD, Kujawa J, Wilson C et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 2011;121:3991–4002. doi: 10.1172/JCI45563

67. Maillard N, Wyatt RJ, Julian BA et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 2015;26:1503–1512. doi: 10.1681/ASN.2014101000

68. Xie J, Kiryluk K, Li Y et al. Fine mapping implicates a deletion of CFHR1 and CFHR3 in protection from IgA nephropathy in Han Chinese. J Am Soc Nephrol 2016;27:3187–3194. doi: 10.1681/ASN.2015111210

69. Rosenblad T, Rebetz J, Johansson M et al. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol 2014;29: 2225–2228. doi: 10.1007/s00467-014-2863-y

70. Ring T, Pedersen BB, Salkus G et al. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J 2015;8:489–491. doi: 10.1093/ckj/sfv076

71. Block GA, Whitaker S. Maintenance of remission following completion of OMS721 treatment in patients with IgA nephropathy (IGAN). Abstract SA-PO278. J Am Soc Nephrol 2017;28:749–750

72. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran DC et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 2009;76:534–545. doi: 10.1038/ki.2009.243

73. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts IS et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 2009;76:546–556. doi: 10.1038/ki.2009.168

74. Coppo R, Troyanov S, Bellur S et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int 2014;86:828–836. doi: 10.1038/ki.2014.63

75. Barbour SJ, Espino-Hernandez G, Reich HN et al. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int 2016;89:167–175. doi: 10.1038/ki.2015.322

76. Haas M, Verhave JC, Liu ZH et al. A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol 2017;28:691–701. doi: 10.1681/ASN.2016040433

77. Tesar V, Troyanov S, Bellur S et al. Corticosteroids in IgA nephropathy: a retrospective analysis from the VALIGA study. J Am Soc Nephrol 2015;26:2248–2258. doi: 10.1681/ASN.2014070697

78. Herzenberg AM, Fogo AB, Reich HN et al. Validation of the Oxford classification of IgA nephropathy. Kidney Int 2011;80:310–317. doi: 10.1038/ki.2011.126

79. Espinosa M, Ortega R, Sanchez M et al. Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol 2014;9:897–904. doi: 10.2215/CJN.09710913

80. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring, MD; Bethesda, MD: US Food and Drug Administration; National Institutes of Health; 2016. Available at: https://www.ncbi.nlm.nih.gov/books/NBK326791/. Accessed May 1, 2018

81. Rauen T, Eitner F, Fitzner C et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 2015; 373:2225–2236. doi: 10.1056/NEJMoa1415463

82. Rauen T, Fitzner C, Eitner F et al. Effects of two immunosuppressive treatment protocols for IgA nephropathy. J Am Soc Nephrol 2018;29:317–325. doi: 10.1681/ASN.2017060713

83. Sarcina C, Tinelli C, Ferrario F et al. Changes in proteinuria and side effects of corticosteroids alone or in combination with azathioprine at different stages of IgA nephropathy. Clin J Am Soc Nephrol 2016;11:973–981. doi: 10.2215/CJN.02300215

84. Maes BD, Oyen R, Claes K et al. Mycophenolate mofetil in IgA nephropathy: results of a 3-year prospective placebocontrolled randomized study. Kidney Int 2004;65:1842–1849. doi: 10.1111/j.1523-1755.2004.00588.x

85. Frisch G, Lin J, Rosenstock J et al. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. Nephrol Dial Transplant 2005;20:2139–2145. doi: 10.1093/ndt/gfh974

86. Hogg RJ, Bay RC, Jennette JC et al. Randomized controlled trial of mycophenolate mofetil in children, adolescents, and adults with IgA nephropathy. Am J Kidney Dis 2015;66:783–791. doi: 10.1053/j.ajkd.2015.06.013

87. Hou JH, Le WB, Chen N et al. Mycophenolate mofetil combined with prednisone versus full-dose prednisone in IgA nephropathy with active proliferative lesions: a randomized controlled trial. Am J Kidney Dis 2017;69:788–795. doi: 10.1053/j.ajkd.2016.11.027

88. Kawamura T, Yoshimura M, Miyazaki Y et al. A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy. Nephrol Dial Transplant 2014;29:1546–1553. doi: 10.1093/ndt/gfu020

89. Feehally J, Coppo R, Troyanov S et al. Tonsillectomy in a European cohort of 1,147 patients with IgA nephropathy. Nephron 2016;132:15–24. doi: 10.1159/000441852

90. Barbour SJ, Cattran DC, Kim SJ et al. Individuals of Pacific Asian origin with IgA nephropathy have an increased risk of progression to endstage renal disease. Kidney Int 2013;84:1017–1024. doi: 10.1038/ki.2013.210

91. Szeto CC, Lai FM, To KF et al. The natural history of immunoglobulin a nephropathy among patients with hematuria and minimal proteinuria. Am J Med 2001;110:434–437. doi: 10.1016/s0002-9343(01)00659-3

92. Gutierrez E, Zamora I, Ballarin JA et al. Long-term outcomes of IgA nephropathy presenting with minimal or no proteinuria. J Am Soc Nephrol 2012;23:1753–1760. doi: 10.1681/ASN.2012010063

93. Tang SC, Tang AW, Wong SS et al. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int 2010;77:543–549. doi: 10.1038/ki.2009.499

94. Lafayette RA, Canetta PA, Rovin BH et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J Am Soc Nephrol 2017;28:1306–1313. doi: 10.1681/ASN.2016060640

95. Yu MY, Kim YC, Chin HJ. Short-term anti-proteinuric effect of tacrolimus is not related to preservation of glomerular filtration rate during 5 yearfollow up period in IgA nephropathy. Abstract SA-PO272. J Am Soc Nephrol 2017;28:748

96. Beck LH Jr, Bonegio RG, Lambeau G et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009;361:11–21. doi: 10.1056/NEJMoa0810457

97. Tomas NM, Beck LH Jr, Meyer-Schwesinger C et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014;371:2277–2287. doi: 10.1056/NEJMoa1409354

98. Stanescu HC, Arcos-Burgos M, Medlar A et al. Risk HLADQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 2011;364:616–626. doi: 10.1056/NEJMoa1009742

99. Cui Z, Xie LJ, Chen FJ et al. MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy. J Am Soc Nephrol 2017;28:1651–1664. doi: 10.1681/ASN.2016020114

100. Du Y, Li J, He F et al. The diagnosis accuracy of PLA2RAB in the diagnosis of idiopathic membranous nephropathy: a meta-analysis. PLoS One 2014;9:e104936. doi: 10.1371/journal.pone.0104936

101. Dahan K, Debiec H, Plaisier E et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J Am Soc Nephrol 2017;28:348–358. doi: 10.1681/ASN.2016040449

102. Hofstra JM, Wetzels JF. Phospholipase A2 receptor antibodies in membranous nephropathy: unresolved issues. J Am Soc Nephrol 2014;25:1137–1139. doi: 10.1681/ASN.2014010091

103. Seitz-Polski B, Debiec H, Rousseau A et al. Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J Am Soc Nephrol 2018;29:401–408. doi: 10.1681/ASN.2017070734

104. Radice A, Trezzi B, Maggiore U et al. Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun Rev 2016;15:146–154. doi: 10.1016/j.autrev.2015.10.004

105. Hofstra JM, Fervenza FC, Wetzels JF. Treatment of idiopathic membranous nephropathy. Nat Rev Nephrol 2013;9:443–458. doi: 10.1038/nrneph.2013.125

106. van de Logt AE, Hofstra JM, Wetzels JF. Pharmacological treatment of primary membranous nephropathy in 2016. Expert Rev Clin Pharmacol 2016;9:1463–1478. doi: 10.1080/17512433.2016.1225497

107. Ramachandran R, Hn HK, Kumar V et al. Tacrolimus combined with corticosteroids versus modified Ponticelli regimen in treatment of idiopathic membranous nephropathy: randomized control trial. Nephrology 2016;21:139–146. doi: 10.1111/nep.12569

108. Qiu TT, Zhang C, Zhao HW et al. Calcineurin inhibitors versus cyclophosphamide for idiopathic membranous nephropathy: a systematic review and meta-analysis of 21 clinical trials. Autoim-mun Rev 2017;16:136–145. doi: 10.1016/j.autrev.2016.12.005

109. Howman A, Chapman TL, Langdon MM et al. Immunosuppression for progressive membranous nephropathy: a UK randomised controlled trial. Lancet 2013;381:744–751. doi: 10.1016/S0140-6736(12)61566-9

110. van den Brand J, Ruggenenti P, Chianca A et al. Safety of rituximab compared with steroids and cyclophosphamide for idiopathic membranous nephropathy. J Am Soc Nephrol 2017;28:2729–2737. doi: 10.1681/ASN.2016091022

111. Ruggenenti P, Debiec H, Ruggiero B et al. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J Am Soc Nephrol 2015;26:2545–2558. doi: 10.1681/ASN.2014070640

112. Hofstra JM, Debiec H, Short CD et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J Am Soc Nephrol 2012;23:1735–1743. doi: 10.1681/ASN.2012030242


Для цитирования:


Флёге Ю., Барбоур Ш., Каттран Д., Хоган Д., Начман П., Танг С., Ветцелс Д., Чеунг М., Вилер Д., Винкелмайер В., Ровин Б. Принципы ведения гломерулярных болезней: итоги согласительной конференции Kidney disease: improving global outcomes (KDIGO). Часть 1. Нефрология. 2020;24(2):22-41. https://doi.org/10.36485/1561-6274-2020-24-2-22-41

For citation:


Floege J., Barbour S., Cattran D., Hogan J., Nachman P., Tang S., Wetzels J., Cheung M., Wheeler D., Winkelmayer W., Rovin B. Management and treatment of glomerular diseases (part 1): conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Nephrology (Saint-Petersburg). 2020;24(2):22-41. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-2-22-41

Просмотров: 1292


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)