Preview

Nephrology (Saint-Petersburg)

Advanced search

Hypercalcemia in children

https://doi.org/10.36485/1561-6274-2020-24-2-42-51

Abstract

Hypercalcemia is a result of a wide range of hereditary and acquired conditions encountered by general physicians and pediatricians. Calcium participates in several key physiological functions, control of blood coagulation, bone calcification. Calcium homeostasis is tightly regulated by the interplay between absorption from the small intestine and renal tubular reabsorption, bone remodeling, and disposal through the gut and the kidney. These processes are regulated by local and circulating factors. The two main hormones influencing the homeostasis of calcium are PTH and calcitriol. Cancer-associated hypercalcemia and primary hyperparathyroidism are the most frequent causes of hypercalcemia in adults. In neonates and infants, one should look first at genetic and iatrogenic etiologies. The clinical manifestations of hypercalcemia in children are nonspecific due to damage to various organs and systems and depend on the degree of blood calcium level. Mild hypercalcemia is asymptomatic and often discovered during routine blood work. Moderate and severe hypercalcemia may cause cardiac arrhythmias, affect the nervous system. The differential diagnosis of the possible etiologies of hypercalcemia should start with the assessment of serum parathyroid hormone (PTH) concentration. The causes of hypercalcemia can be divided between PTH-mediated and non-PTH-mediated. Identification of the main causes of hypercalcemia contributes to the timely elimination of trigger factors, beginning of treatment, correction of nutrition and lifestyle. The article highlights physiological mechanisms of calcium homeostasis, clinical manifestations, diagnostic algorithms and treatment of hypercalcemia in children.

About the Author

S. V. Papizh
Russian National Research Medical University named after N.I. Pirogov
Russian Federation

Svetlana V. Papizh MD, PhD.

Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University, Department of hereditary and acquired diseases of the kidneys.

125412,Moscow, Taldomskaya st., 2
Phone: +7(495)4832192 



References

1. Lee CT, Yang CC, Lam KK et al. Hypercalcemia in the emergency department. Am J Med Sci 2006;331:119–123. doi: 10.1097/00000441-200603000-00002

2. Lindner G, Felber R, Schwarz C et al. Hypercalcemia in the ED: prevalence, etiology, and outcome. Am J Emerg Med 2013;31:657–660. doi: 10.1016/j.ajem.2012.11.010

3. Lietman SA, Germain-Lee E, Levine MA. Hypercalcaemia in Children and Adolescents. Curr Opin Pediatr 2010;22(4):508–515. doi: 10.1097/mop.0b013e32833b7c23

4. Auron A, Alon US. Hypercalcemia: a consultant's approach. Pediatr Nephrol 2018;33(9):1475–1488. doi: 10.1007/s00467017-3788-z

5. Carroll MF, Schade DS. A practical approach to hypercalcemia. Am Fam Physician 2003;67(9):1959–1966

6. Hall JE. Guyton and Hall Textbook of Medical Physiology; 12th ed. Saunders; 2010. 955–972

7. Bronner F. Mechanisms of intestinal calcium absorption. J Cell Biochem 2003;88:387–993. doi: 10.1002/jcb.10330

8. Davies JH, Shaw NJ. Investigation and management of hypercalcaemia in children. Arch Dis Child 2012;97(6):533–538. doi: 10.1136/archdischild-2011-301284

9. Endres DB. Investigation of hypercalcemia. Clin Biochem 2012;45:954–963. doi: 10.1016/j.clinbiochem.2012.04.025

10. Rodd C, Goodyer P. Hypercalcemia of the newborn: etiolgy, evaluation, and management. Pediatr Nephrol 1999;13(6):542–547. doi: 10.1007/s004670050654

11. Reynolds BC, Cheetham TD. Bones, stones, moans and groans: hypercalcaemia revisited. Arch Dis Child Educ Pract Ed 2015;100(1):44–51. doi: 10.1136/archdischild-2013-305406

12. Park HJ, Choi EJ, Kim JK. A successful treatment of hyper-calcemia with zoledronic acid in a 15-year-old boy with acute lym-phoblastic leukemia. Ann Pediatr Endocrinol Metab 2016;21(2):99–104. doi: 10.6065/apem.2016.21.2.99

13. Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic Disorders in Children. J Bon Min Res 2017;32(11):21572170. doi: 10.1002/jbmr.3296

14. Hoppe B, Ariceta G, Langman CB. Hypercalcemia. In: Zelikovic I, Eisenstein I. Practical algorithms in Pediatric Nephrology. Series Editor: Z. Hochberg. Amazon. 2008; 94–95. doi: 10.1159/isbn.978-3-8055-8565-1

15. Roizen J, Levine MA Primary hyperparathyroidism in children and adolescents. J Chin Med Assoc 2012;75(9):425–434. doi: 10.1016/j.jcma.2012.06.012

16. Skalova S, Cerna L, Bayer M, Kutilek S et al. Intravenous Pamidronate in the Treatment of Severe Idiopathic Infantile Hypercalcemia. IJKD 2013;7(2):160–164. doi: 10.1530/boneabs.2.p90

17. Yavropoulou MP, Kotsa K, Gotzamani Psarrakou A, Papazisi A et al. Cinacalcet in hyperparathyroidism secondary to X-linked hypophosphatemic rickets: case report and brief literature review. Hormones 2010;9:274–278. doi: 10.14310/horm.2002.1277

18. Mayr B, Schnabel D, Dörr HG, Schöfl C. Genetics in endocrinology: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. Eur J Endocrinol 2016;174:189–208. doi: 10.1530/eje-15-1028

19. Nesbit MA, Hannan FM, Howles SA, Babinsky VN et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 2013;368:2476–2486. doi: 10.1056/nejmoa1300253

20. Nesbit MA, Hannan FM, Howles SA, Reed AA et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet 2013;13(45):93–97. doi: 10.1038/ng.2492

21. Respina Jalilian, Mehran Jalilzadeh Binazar, Lubna Mirza Familial hypocalciuric hypercalcemia and benefits of genetic confirmation: a case report and review. AACE Clinical Case Reports 2017;3(4):361–363. doi: 10.4158/ep161401.cr

22. Shinall MC Jr, Dahir KM, Broome JT. Differentiating familial hypocalciuric hypercalcemia from primary hyperparathyroidism. Endocr Pract 2013;19:697–702. doi: 10.4158/ep12284.ra23.

23. García Soblechero E, Ferrer Castillo MT, Jiménez Crespo B, Domínguez Quintero ML, González Fuentes C. Neonatal hypercalcemia due to a homozygous mutation in the calcium-sensing receptor: failure of cinacalcet. Neonatology 2013;104:104–108. doi: 10.1159/000350540

24. Anderson K, Ruel E, Adam MA et al. Subtotal vs. total parathyroidectomy with autotransplantation for patients with renal hyperparathyroidism have similar outcomes. Am J Surg 2017;214:914–919. doi: 10.1016/j.amjsurg.2017.07.018

25. Kara C, Çetinkaya S, Gündüz S et al. Efficacy and safety of pamidronate in children with vitaminD intoxication. Pediatr Int 2016;58(7):562–568. doi: 10.1111/ped.12875

26. Fencl F, Bláhová K, Schlingmann KP et al. Severe hypercalcemic crisis in an infant with idiopathic infantilehypercalcemia caused by mutation in CYP24A1 gene. Eur JPediatr 2013;172(1):45–49. doi: 10.1007/s00431-012-1818-1

27. Sharma OP. Hypercalcemia in granulomatous disorders: a clinical review. Curr Opin Pulm Med 2000;6:442–447. doi: 10.1097/00063198-200009000-00010

28. Dudink J, Walther FJ, Beekman RP. Subcutaneous fat necrosis of the newborn: hypercalcaemia with hepatic and atrial myocardial calcification. Arch Dis Child Fetal Neonatal Ed 2003; 88:343–345. doi: 10.1136/fn.88.4.f343

29. Schlingmann KP, Kaufmann M, Weber S et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 2011; 365: 410–421. doi: 10.1056/nejmoa1103864

30. Tebben PJ, Milliner DS, Horst RL et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: Effects of ketoconazole therapy. J Clin Endocrinol Metab 2012;97(3):423–427. doi: 10.1210/jc.2011-1935

31. Schlingmann KP, Ruminska J, Kaufmann M et al. Autosomal recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 2016;272:604–614. doi: 10.1681/asn.2014101025

32. Demir K, Yildiz M, Bahat H et al. Clinical heterogeneity and phenotypic expansion of NaPi-IIa-associated disease. J Clin Endocrinol Metab 2017;102:4604–4614. doi:10.1210/jc.2017-01592

33. Phulwani P, Bergwitz C, Jaureguiberry G. et al. Hereditary hypophosphatemic rickets with hypercalciuria and nephrolithiasisidentification of a novel SLC34A3/NaPi-IIc mutation. Am J Med Genet 2011;155A:626–633. doi: 10.1002/ajmg.a.33832

34. Tencza AL, Ichikawa S, Dang A. et al. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/Type IIc sodium-phosphate cotransporter: Presentatión as hypercalciuria and nephrolithiasis. J Clin Endocrinol Metab 2009;94:4433–4438. doi: 10.1210/jc.2009-1535

35. Cagle AP, Waguespack SG, Buckingham BA et al. Severe infantile hypercalcemia associated with Williams syndrome successfully treated with intravenously administered pamidronate. Pediatrics 2004;114(4):1091–1095. doi: 10.1542/peds.2003-1146-l

36. Sindhar S, Lugo M, Levin MD et al. Hypercalcemia in patients with Williams–Beuren syndrome. J Pediatr 2016;178:254–260. doi: 10.1016/j.jpeds.2016.08.027

37. Millán JL, Whyte MP. Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int 2016;98(4):398–416. doi: 10.1007/s00223-015-0079-1

38. Whyte MP, Coburn SP, Ryan LM et al. Hypophosphatasia: Biochemical hallmarks validate the expanded pediatric clinical nosology. Bone 2018;110:96–106. doi: 10.1016/j.bone.2018.01.022

39. Whyte MP, Rockman-Greenberg C, Ozono K et al. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab 2016;101(1):334–342. doi:10.1210/jc.2015-3462

40. Gardella TJ, Jüppner H, Brown EM et al. Parathyroid hormone and parathyroid hormone receptor type 1 in the regulation of calcium and phosphate homeostasis and bone metabolism. In: DeGroot LJ, Jameson JL, editors. eds. Endocrinology. 7th ed Philadelphia: W. B. Saunders Co; 2016:969–990

41. Nampoothiri S, Fernández-Rebollo E, Yesodharan D et al. Jansen metaphyseal chondrodysplasia due to heterozygousH223R-PTH1R mutations with or without overt hypercalcemia. J Clin Endocrinol Metab 2016;101(11):4283–4289. doi: 10.1210/jc.2016-2054

42. Safi KH, Filbrun AG, Nasr SZ. Hypervitaminosis A causing hypercalcemia in cystic fibrosis. Case report and focused review. Ann Am Thorac Soc 2014;11(8):1244–1247. doi: 10.1513/annalsats.201404-170bc

43. Cano-Torres EA, González-Cantu A, Hinojosa-Garza G, Castilleja-Leal F. Immobilization induced hypercalcemia. Clin Cases Miner Bone Metab 2016;13(1):46–47. doi: 10.11138/ccmbm/2016.13.1.046

44. Stewart AF. Hypercalcemia associated with cancer. N Engl J Med 2005;352:373–379. doi: 10.1056/nejmcp042806

45. Reagan P, Pani A, Rosner MH. Approach to diagnosis and treatment of hypercalcemia in a patient with malignancy. Am J Kidney Dis 2014;63:141–147. doi: 10.1053/j.ajkd.2013.06.025

46. Sebestyen JF, Srivastava T, Alon US. Bisphosphonates use in children. Clin Pediatr 2012;51(11):1011–1024. doi: 10.1177/0009922812452118

47. Rosner MH, Dalkin AC. Onco-nephrology: the pathophysiology and treatment of malignancy-associated hypercalcemia. Clin J Am Soc Nephrol 2012;7:1722–1729. doi: 10.2215/cjn.02470312

48. Nguyen M, Boutignon H, Mallet E, Linglart A et al. Infantile hypercalcemia and hypercalciuria: new insights into a vitamin Ddependent mechanism and response to ketoconazole treatment. J Pediatr 2010;125(2):296–302. doi: 10.1016/j.jpeds.2010.02.025

49. Hu MI, Glezerman IG, Leboulleux S et al. Denosumab for treatment of hypercalcemia of malignancy. J Clin Endocrinol Metab 2014;99:3144–3152. doi: 10.1210/jc.2014-1001

50. Alon US, VanDeVoorde RG. Beneficial effect of cinacalcet in a child with familial hypocalciuric hypercalcemia. Pediatr Nephrol 2010;25:1747–1750. doi: 10.1007/s00467-010-1547-5


Review

For citations:


Papizh S.V. Hypercalcemia in children. Nephrology (Saint-Petersburg). 2020;24(2):42-51. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-2-42-51

Views: 4170


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)