Preview

Нефрология

Расширенный поиск

Креатинин в современной оценке функционального состояния почек (обзор литературы и собственные данные)

https://doi.org/10.36485/1561-6274-2020-24-4-21-36

Аннотация

Скорость клубочковой фильтрации (СКФ) является общепризнанным показателем функционального состояния почек. В медицинской практике существуют различные подходы для измерения СКФ. Однако, несмотря на почти столетнюю историю, далеко не все методологические проблемы оценки СКФ в клинической практике решены. Наиболее физиологически обоснованные («референтные») методы неприемлемы в рутинной практике из-за сложности и дороговизны. Клиницистам приходится опираться в основном на результаты суррогатных способов, большинство из которых в качестве гломерулотропного тест-агента предполагают использование эндогенного креатинина. Поэтому точность определения концентрации этого метаболита в биологических средах (особенно в сыворотке крови) зачастую решающим образом определяет надежность оценки СКФ. Производители наборов реагентов для определения креатинина должны принимать во внимание современные требования к точности и прослеживаемости результатов измерений и обеспечивать соответствие своей продукции международным нормам.

Об авторах

И. Г. Каюков
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Россия

Проф. Каюков Иван Глебович, д-р мед. наук
197022, Санкт-Петербург, ул. Л. Толстого, д. 17. 

Тел.: 8(981)8153949



О. В. Галкина
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Россия

Галкина Ольга Владимировна, канд. биол. наук, лаборатория биохимического гомеостаза.

197022, Санкт-Петербург, ул. Л. Толстого, д. 17. 

Тел.: (812)3386901



Е. И. Тимшина
Общество с ограниченной ответственностью «Научно-производственная фирма «АБРИС+»
Россия

Тимшина Евгения Ивановна, биохимик-технолог

196006, Санкт-Петербург, ул. Цветочная, д. 16, лит. М, 2-й этаж

Тел.: 8(921)4019054



И. М. Зубина
Научно-исследовательский институт нефрологии, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Россия

Зубина Ирина Михайловна, канд. биол. наук

197022, Санкт-Петербург, ул. Л. Толстого, д. 17. 

Тел.: (812)3386901



А.. Ю. Михеева
Химико-аналитический центр «Арбитраж», Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева
Россия

Михеева Алена Юрьевна, канд. хим. наук, Научно-исследовательский отдел государственных эталонов в области органического и неорганического анализа, ведущий научный сотрудник

190005, Санкт-Петербург, Московский пр., д. 19. 

Тел.: 8(911)2507022



Г. М. Бердичевский
Химико-аналитический центр «Арбитраж», Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева
Россия

Бердичевский Григорий Михайлович, Научно-исследовательский отдел государственных эталонов в области органического и неорганического анализа, инженер 2-й категории.

190005, Санкт-Петербург, Московский пр., д. 19. 

Тел.: 8(812)-2517601



Список литературы

1. Bikbov B, Perico N, Remuzzi G. Disparities in chronic kidney disease prevalence among males and females in 195 countries: analysis of the Global Burden of Disease Study 2016. Nephron 2018;139(4):313–318. doi: 10.1159/000489897

2. GBD 2015 Mortality and Causes of Death, Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388(10053):1459–1544. doi: 10.1016/S0140-6736- (16)31012-1

3. GBD 2013 Mortality and Causes of Death, Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;385(9963):117–171. doi: 10.1016/S0140-6736- (14)61682-2

4. Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:S6–308

5. Nosek T. Essentials of human physiology. Glomerular filtration rate. Gold Standard Multimedia Incorporated. 1998; Section 7, ch 4, p11

6. Perrone RD, Steinmen TI, Beck GJ et al. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study Group. Am J Kidney Dis 1990;16:224–235

7. Levey AS, Greene T, Schluchter MD et al. Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol 1993;4:1159–1171

8. Israelit AH, Long DL, White UG, Hall AR. Measurement of glomerular filtration rate utilizing a single subcutaneous injection of 125I-sodium iothalamate. Kidney Int 1973;4:345–349

9. Van Slyke D, Dole V. The Significance of the urea clearance. J Clin Pathol 1949;2(4):273–274

10. Rehberg PB. Studies on kidney function: the rate of filtration and reabsorption in the human kidney. Biochem J 1926;20(3):447–460

11. Тареев ЕМ, Ратнер НА. Клиническая ценность креатининовой пробы Реберга. Тер архив 1935;(4):684–687 Tareev EM, Ratner NA. The clinical value of a Reberg creatinine test. Ther Arkhiv 1935;(4):684–687 (In Russ.)

12. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine 1916;17(6):863–871

13. Verbraecken J, Van de Heyning P, De Backer W, Van Gaal L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism – clinical and experimental 2006;55(4):515–524. doi: 10.1016/j.metabol.2005.11.004

14. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987;317(17):1098

15. Sparreboom A, Verweij J. Paclitaxel pharmacokinetics, threshold models, and dosing strategies. Journal of Clinical Oncology 2003;21(14):2803–2804. doi: 10.1200/JCO.2003.99.038

16. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis 2002;39:S1–S246

17. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41

18. Shemesh O, Golbety H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 1985;28:830–838

19. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 1992;38(10):1933–1953

20. Kassirer JP. Clinical evaluation of kidney function – glomerular function. N Engl J Med 1971;285(7):385–389

21. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 2009;20(3):672–679. doi: 10.1681/ASN.2008070669

22. Смирнов АВ, Каюков ИГ, Дегтерева ОА и др. Проблемы диагностики и стратификации тяжести острого повреждения почек. Нефрология 2009;13(3):9–18 Smirnov AV, Kayukov IG, Degtereva OA et al. Problems of diagnostic and stratification of severity of acute kidney injury. Nephrology (Saint-Petersburg) 2009;13(3):9–18 (In Russ.)

23. Schaeffner E. Determining the glomerular filtration rate – an overview. J Ren Nutr 2017;27(6):375–380. doi: 10.1053/j. jrn.2017.07.005

24. Alaini A, Malhotra D, Rondon-Berrios H et al. Establishing the presence or absence of chronic kidney disease: Uses and limitations of formulas estimating the glomerular filtration rate. World J Methodol 2017;7(3):73–92. doi: 10.5662/wjm.v7.i3.73

25. Delanaye P, Cavalier E, Pottel H. Serum creatinine: not so simple! Nephron 2017;136:302–308. doi: 10.1159/000469669

26. Stevens LA, Levey AS. Clinical implications for estimating equations for GFR. Ann Intern Med 2004;141:959–961

27. Gault MH, Longerich LL, Harnett JD, Wesolowski C. Predicting glomerular function from adjusted serum creatinine. Nephron 1992;62(3):249–256

28. Levey AS, Bosch JP, Lewis JB et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999;130:461–470

29. Poggio ED, Wang X, Greene T et al. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol 2005;16:459–466. doi: 10.1681/ ASN.2004060447

30. Poggio ED, Nef PC, Wang X et al. Performance of the Cockcroft-Gault and modification of diet in renal disease equations in estimating GFR in ill hospitalized patients. Am J Kidney Dis 2005;46:242–252. doi: 10.1053/j.ajkd.2005.04.023

31. Myers GL, Miller WG, Coresh J et al. Recommendations for improving serum creatinine measurement: A report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 2006;52:5–18. doi: 10.1373/ clinchem.2005.0525144

32. Stevens LA, Schmid CH, Greene T et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) study equations for estimating GFR levels above 60 ml/min/1.73m2. Am J Kidney Dis 2010;56:486–495. doi: 10.1053/j.ajkd.2010.03.026

33. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604– 612

34. Matsushita K, Selvin E, Bash LD et al. Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) Study. American Journal of Kidney Diseases 2010;55(4):648–659. doi: 10.1053/j. ajkd.2009.12.016

35. Grubb AO. Cystatin C – properties and use as diagnostic marker. Adv Clin Chem 2000;35:63–99

36. Laterza O, Price C, Scott M. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 2002;48:699– 707

37. Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children – a metaanalysis. Clin. Biochem 2007;40(5-6): 383–391. doi: 10.1016/j. clinbiochem.2006.10.026

38. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002;40(2):221–226. doi: 10.1053/ajkd.2002.34487

39. Stevens LA, Coresh J, Schmid CH et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am. J. Kidney Dis 2008;51(3):395–406. doi: 10.1053/j.ajkd.2007.11.018

40. Beetham KS, Howden EJ, Isbel NM, Coombes JS. Agreement between cystatin-C and creatinine based eGFR estimates after a 12-month exercise intervention in patients with chronic kidney disease. BMC Nephrol 2018;19:366. doi: 10.1186/s12882- 018-1146-4

41. Inker LA, Eckfeldt J, Levey AS et al. Expressing the CKDEPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis 2011;58:682–684. doi: 10.1053/j. ajkd.2011.05.019

42. Delanaye P, Mariat C, Cavalier E, Krzesinski JM. Errors induced by indexing glomerular filtration rate for body surface area: reductio ad absurdum. Nephrol Dial Transplant 2009;24(12):3593– 3596. doi: 10.1093/ndt/gfp431

43. Agati VD, Chagnac A, de Vries AP et al. Obesityrelated glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 2016;12(8):453–471. doi: 10.1038/nrneph.2016.75

44. Von Scholten BJ, Persson F, Svane MS et al. Effect of large weight reductions on measured and estimated kidney function. BMC Nephrol 2017;18(1):52. doi: 10.1186/s12882-017-0474-0

45. The National Kidney Foundation [сайт]: GFR Calculator. 2019. URL: https://www.kidney.org/professionals/kdoqi/gfr_calculator (дата обращения 08.05.2019)

46. Саганова ЕС, Галкина ОВ, Левыкина ЕН. Экскретируемая фракция магния в диагностике гломерулосклероза. Ремедиум Приволжье 2017;8(158):24 Saganova ES, Galkina OV, Levykina EN. Magnesium fraction excretion in the diagnosis of glomerulosclerosis. Remedium Privolzh'ye 2017;8(158):24 (In Russ.)

47. Schaeffner ES, Ebert N, Delanaye P et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012;157(7):471–481. doi: 10.7326/0003- 4819-157-7-201210020-00003

48. Pottel H, Hoste L, Dubourg L et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 2016;31(5):798–806. doi: 10.1093/ndt/gfv454

49. Pottel H, Vrydags N, Mahieu B et al. Establishing age/ sex related serum creatinine reference intervals from hospital laboratory data based on different statistical methods. Clin Chim Acta 2008;396:49–55. doi: 10.1016/j.cca.2008.06.017

50. Pottel H, Hoste L, Martens F. A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr Nephrol 2012;27:973–979. doi: 10.1007/s00467-011-2081-9

51. Hoste L, Dubourg L, Selistre L et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant 2014;29:1082–1091. doi: 10.1093/ndt/gft277

52. ГОСТ Р ИСО 5725-1-2002. Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения GOST R ISO 5725-1-2002. Accuracy (accuracy and precision) of measurement methods and results. Part 1. The main provisions and definitions (In Russ.)

53. Jaffe M. Uber den niederschlag welchen pikrinsa¨ure in normalem harn erzeugt und ueber eine neue reaction des kreatinins. Z Physiol Chem 1886;10:391–400

54. Shaffer P. Otto Folin (1867–1934). Biographical Memoirs of the National Academy of Sciences. 1952;27:47–82

55. Folin O. Lab Manual of Biological Chemistry. D. Appleton and Co, New York, 1916; 171–173

56. Osberg IM, Hammond KB. A solution to the problem of bilirubin interference with the kinetic Jaffe´ method for serum creatinine. Clin Chem 1978;24:1196–1197

57. Gerard SK, Khayam-Bashi H. Characterization of creatinine error in ketotic patients: a prospective comparison of alkaline picrate methods with an enzymatic method. Am J Clin Pathol 1985;84:659–664

58. Young DS. Effects of drugs on clinical laboratory tests, 4th ed. Washington, DC: American Association for Clinical Chemistry Press, 1995;3:190–208

59. Kulkarni S, Wilson AP, Gruneberg RN et al. Interference of cefpirome with the measurement of plasma creatinine. J Antimicrob Chemother 1991;28:617–619

60. Guix P, Parera M, Fuentespina E et al. Study of the interference of haemolysis in the determination of creatinine in the Technicon DAX-72 (Bayer). Eur J Clin Chem Clin Biochem 1997;35:115–116

61. Siest G, Appel W, Blijenberg GB et al. Drug interference in clinical chemistry: studies on ascorbic acid. J Clin Chem Clin Biochem 1978;16:103–110

62. Mali B, Nicholas PC. Jaffe´s reaction for creatinine: kinetic study and spectrophotometric characteristics of the product of the reactions of creatinine, acetoacetate and creatinine and acetoacetate with alkaline picrate. Biochem Soc Trans 1988;16:549–550

63. Peake M, Whiting M. Measurement of serum creatinine – current status and future goals. Clin Biochem 2006;27:173–184

64. Cook JG. Factors influencing the assay of creatinine. Ann Clin Biochem 1975;12:219–232

65. Bowers LD, Wong ET. Kinetic serum creatinine assays. II. A critical evaluation and review. Clin Chem 1980;26:555–561

66. Pardue HL, Bacon BL, Groeger Nevius M, Skoug JW. Kinetic study of the Jaffe reaction for quantifying creatinine in serum: 1. Alkalinity controlled with NaOH. Clin Chem 1987;33:278–285

67. Chasson AL, Grady HJ, Stanley MA. Determination of creatinine by means of automatic analysis. Am J Clin Pathol 1961;35:83–88

68. Boot S, LaRoche N, Legg EF. Elimination of bilirubin interference in creatinine assays by routine techniques: comparisons with a high performance liquid chromatography method. Ann Clin Biochem 1994;31:262–266

69. Welch MJ, Cohen A, Hertz HS et al. Determination of serum creatinine by isotope dilution mass spectrometry as a candidate definitive method. Anal Chem 1986;58:1681–1685

70. Lawson N, Lang T, Broughton A et al. Creatinine assays: time for action? Ann Clin Biochem 2002;39:599–602. doi: 10.1177/000456320203900609

71. Lamb EJ, Wood J, Stowe HJ et al. Susceptibility of glomerular filtration rate estimations to variations in creatinine methodology: a study in older patients. Ann Clin Biochem 2005;42:11–18. doi: 10.1258/0004563053026899

72. Khatami Z, Dey D, Handley G et al. In the name of traceability. Author’s reply. Ann Clin Biochem 2005;42:162–163

73. Klee GG, Schryver PG, Saenger AK, Larson TS. Effects of analytic variations in creatinine measurements on the classification of renal disease using estimated glomerular filtration rate (eGFR). Clin Chem Lab Med 2007;45:737–741. doi: 10.1515/CCLM.2007.168

74. Moss GA, Bondar RL, Buzzelli DM. Kinetic enzymatic method for determining serum creatinine. Clin Chem 1975;21:1422–1426

75. Tanganelli E, Prencipe L, Bassi D et al. Enzymatic assay of creatinine in serum and urine with creatinine iminohydrolase and glutamate dehydrogenase. Clin Chem 1982;28:1461–1464

76. Boyne P, Robinson BA, Murphy P, McKay M. Enzymatic correction of interference in the kinetic Jaffe reaction for determining creatinine in plasma. Clin Chem 1985;31:1564–1565

77. Schmidt RL, Straseski JA, Raphael KL et al. A risk assessment of the Jaffe vs enzymatic method for creatinine measurement in an outpatient population. PloS one. 2015;10(11):e0143205. doi: 10.1371/journal.pone.0143205

78. Bureau International des Poids et Mesures [сайт]: Joint Committee for Traceability in Laboratory medicine Database. 2019. URL: https://www.bipm.org/jctlm/fillFormulaire.do?nice_border=1 (дата обращения 08.05.2019)

79. National Institute of Standards and Technology [электронный ресурс]: Standards Reference Materials. 2019. URL: https://www-s.nist.gov/srmors/certificates/914A.pdf (дата обращения 08.05.2019)

80. Convention CIPM MRA, 14.10.1999. Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes (In Russ.)

81. Bureau International des Poids et Mesures [электронный ресурс]: Determination of Glucose in Human Serum and Determination of Creatinine in Human Serum. Final Report April 2018. URL: https://www.bipm.org/utils/common/pdf/final_reports/QM/K11/CCQM-K11.2_and_12.2.pdf (дата обращения 08.05.2019)

82. Bureau International des Poids et Mesures [электронный ресурс]: Determination of Total Cholesterol in Human Serum. Final Report. April 2018. URL: https://www.bipm.org/utils/common/pdf/final_reports/QM/K6/CCQM-K6.2.pdf (дата обращения 08.05.2019)

83. Bureau International des Poids et Mesures [электронный ресурс]: High Polarity Analytes in Biological Matrix: Determination of Urea and Uric Acid in Human Serum. Final Report. July 2018. URL: https://www.bipm.org/utils/common/pdf/final_reports/QM/K109/CCQM-K109.pdf (дата обращения 08.05.2019)

84. Biljak VR, Honovi_c L, Matica J et al. The role of laboratory testing in detection and classification of chronic kidney disease:national recommendations. Biochem Med 2017;27(1):153–176

85. W. Greg Miller and Graham R. D. Jones. Estimated Glomerular Filtration Rate; Laboratory Implementation and Current Global Status. Adv Chronic Kidney Dis 2018;25(1):7–13


Рецензия

Для цитирования:


Каюков И.Г., Галкина О.В., Тимшина Е.И., Зубина И.М., Михеева А.Ю., Бердичевский Г.М. Креатинин в современной оценке функционального состояния почек (обзор литературы и собственные данные). Нефрология. 2020;24(4):21-36. https://doi.org/10.36485/1561-6274-2020-24-4-21-36

For citation:


Kayukov I.G., Galkina O.V., Timshina E.I., Zubina I.M., Miheeva A.U., Berdichevsky G.M. Creatinin in the modern evaluation of the kidneys functional condition (literature review and own data). Nephrology (Saint-Petersburg). 2020;24(4):21-36. (In Russ.) https://doi.org/10.36485/1561-6274-2020-24-4-21-36

Просмотров: 1488


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)