Preview

Nephrology (Saint-Petersburg)

Advanced search

Renal aKlotho expression, fibroblast growth factor 23 and parathyroid hormone in experimental modeling of early stages of chronic kidney injury

Abstract

THEAIM. To determine changes of aKlotho protein kidney expression, circulating levels of fibroblast growth factor 23 (FGF23) and intact parathyroid hormone (PTH) and the parameters of inorganic phosphate (Pi) exchange in experimental modeling of early stages of chronic kidney disease. MATERIAL AND METHODS. The experimental models the chronic kidney injury were 3/4 or 5/6 nephrectomy (NE) in SHR rats while sham-operated SHR rats served as control groups. The duration of experiments was 1 or 2 months. The indices of Pi urinary excretion were determined as well as renal aKlotho protein expression by immunohistochemistry, serum concentrations of FGF23 and PTH (by enzyme-linked immunosorbent assay). RESULTS. The implemented models corresponded to 1C-3C stages of chronic kidney disease. Renal excretion of Pi was significantly increased in the groups of nephrectomized animals. No significant differences were observed in the serum concentration of FGF23 and PTH between control and experimental groups. FGF23 levels were significantly higher only in model of 5/6NE in compare to control groups. In contrary, the renal expression of aKlotho protein was significantly lower in all experimental models of 3/4NE, 5/6 NE compared to the control (sham-operated SHR, 1 month). Moreover, a significant reduction of aKlotho protein was identified at the earliest stage of kidney damage among models applied that was sham-operated SHR, 2 months (vs. sham-operated SHR, 1 month). CONCLUSION. Changes in FGF23/aKlotho system preceeds development of secondary hyperparathyroidism; in early stages of chronic kidney injury the reduction aKlotho in kidney occurs earlier than the systemic increase of FGF23; increase of relative and absolute phosphate excretion in the early stages of experimental CKD is independent from aKlotho, FGF23 and PTH.

About the Authors

VA Dobronravov
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


E. O. Bogdanova
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


N. YU. Semenova
Российский научно-исследовательский институт гематологии и трансфузиологии
Russian Federation


O. N. Beresneva
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


M. M. Parastaeva
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


O. V. Galkina
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


I. M. Zubina
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


E. E. Zueva
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлов
Russian Federation


G. T. Ivanova
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


I. G. Kaukov
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


IL. . Kovalenko
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлов
Russian Federation


L. V. Kotenko
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлов
Russian Federation


G. M. Nuftullina
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлов
Russian Federation


V. G. Sipovsky
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


VA Zinserling
Санкт-Петербургский научноисследовательский институт фтизиопульмонологии
Russian Federation


A. V. Smirnov
Научно-исследовательский институт нефрологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова
Russian Federation


References

1. Kestenbaum В, Sampson JN, Rudser KD. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005;16(2):520-528

2. Добронравов ВА. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и Klotho. Нефрология 2011;15(4):11-20

3. Craver L, Marco MP, Martonez I et al. Mineral metabolism parameters throughout chronic kidney disease stages 1-5-achievement of K/DOQI target ranges. Nephrol Dial Transplant 2007;22(4):1171-1176

4. Hruska KA, Mathew S, Lund R et al. Hyperphosphatemia of chronic kidney disease. Kidney Int 2008;74(2):148-157

5. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol 2013;180:47-63

6. Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 2007;194(1):1-10

7. Hasegawa H, Nagano N, Urakawa I et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 2010;78:975-980

8. Sakan H, Nakatani K, Asai O et al. Reduced Renal б-Klotho Expression in CKD Patients and Its Effect on Renal Phosphate Handling and Vitamin D Metabolism. PLoS One. 2014;9(1):e86301. doi: 10.1371/journal.pone.0086301

9. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2012;82(7):737-747

10. Isakova T, Xie H, Barchi-Chung A et al. Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin J Am Soc Nephrol 2011;6:2688-9520

11. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant 2012;27(7):2650-2657

12. Takahashi S, Okada K, Nagura Y et al. Three-quarters nephrectomy in rats as a model of early renal failure. Jpn J Nephrol 1991;33(1):27-31

13. Береснева ОН, Парастаева ММ, Иванова ГТ. и др. Оценка кардиопротективного действия малобелковой соевой диеты и уровень неорганических анионов сыворотки крови у спонтанно-гипертензивных крыс с нефрэктомией. Нефрология 2007;11(3):70-76

14. Ormrod D, Miller T. Experimental uremia. Description of a model producing varying degrees of stable uremia. Nephron 1980; 26(5):249-254

15. Feldman HI, Appel LJ, Chertow GM et al. The Chronic Renal Insufficiency Cohort (CRIC) Study: Design and Methods. J Am Soc Nephrol 2003;14:148-153

16. Gutierrez O, Isakova T, Rhee E et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005;16:2205-2215

17. Larsson T, Nisbeth U, Ljunggren O, et al. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003;64:2272-2279

18. van Husen M, Fischer AK, Lehnhardt A et al. Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 2010;78:200-206

19. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 2012;92(1):131-155

20. Aizawa H, Saito Y Nakamura T et al. Downregulation of the Klotho gene in the kidney under sustained circulatory stress in rats. Biochem Biophys Res Commun 1998; 249: 865-871

21. Burnett SM, Gunawardene SC, Bringhurst FR et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 2006;21:1187-1196

22. Haruna X Kashihara N, Satoh M et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci USA 2007; 104: 2331-2336

23. Wang X, Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 2009; 54:810-817

24. Moe SM, Radcliffe JS, White KE et al. The pathophysiology of early-stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat. J Bone Miner Res 2011;26(11):2672-2681

25. Spichtig D, Zhang H, Mohebbi N et al. Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int 2014; doi:10.1038/ ki.2013.526

26. Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 2012;22(1):61-86


Review

For citations:


Dobronravov V., Bogdanova E.O., Semenova N.Yu., Beresneva O.N., Parastaeva M.M., Galkina O.V., Zubina I.M., Zueva E.E., Ivanova G.T., Kaukov I.G., Kovalenko I., Kotenko L.V., Nuftullina G.M., Sipovsky V.G., Zinserling V., Smirnov A.V. Renal aKlotho expression, fibroblast growth factor 23 and parathyroid hormone in experimental modeling of early stages of chronic kidney injury. Nephrology (Saint-Petersburg). 2014;18(2):72-78. (In Russ.)

Views: 435


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)