Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Саркопения у пациентов с хронической болезнью почек: распространенность, особенности патогенеза и клиническое значение

https://doi.org/10.36485/1561-6274-2021-25-1-47-58

Полный текст:

Аннотация

Хроническая болезнь почек (ХБП) представляет собой хроническое катаболическое состояние, сопровождаемое сар-копенией, проявляющейся снижением мышечной массы, силы и выносливости. Согласно определению Европейской рабочей группы по саркопении, у пожилых людей (EWGSOP) саркопения представляет собой прогрессирующее генерализованное заболевание скелетных мышц, которое связано с повышенным риском неблагоприятных исходов, включая падения, переломы, физическую нетрудоспособность и смертность. Ее распространенность у пациентов с ХБП, по разным данным, варьирует от 3,9 до 65,5 % в зависимости от пола, возраста и стадии заболевания. Она развивается в результате дисбаланса между деградацией белка и его синтезом. Развитие мышечной атрофии сопряжено с окислительным стрессом, воспалительным процессом и приводит к прогрессированию атеросклероза. Представленный научный обзор содержит современные сведения по проблеме саркопении у пациентов с ХБП, распространенности, молекулярных основах патогенеза, а также ее вклада в сердечно-сосудистый риск и смертность от сердечнососудистых заболеваний в обсуждаемой группе.

Об авторе

М. З. Гасанов
Федеральное государственное бюджетное образовательное учреждение высшего образования» Министерства здравоохранения Российской Федерации
Россия

Доцент Гасанов Митхат Зульфугар-оглы - кандидат медицинских наук, кафедра внутренних болезней № 1

344022, Ростов-на-Дону, пер. Нахичеванский, д. 29, Тел.: +79889473750



Список литературы

1. Irwin H Rosenberg. Summary comments. The American Journal of Clinical Nutrition, Volume 50, Issue 5, November 1989, Pages 1231-1233. doi: 10.1093/ajcn/50.5.1231

2. Paulo Roberto Carvalho do Nascimento, Stephane Poitras and Martin Bilodeau. How do we define and measure sarcopenia? Protocol for a systematic review. Carvalho do Nascimento et al. Systematic Reviews (2018) 7:51. doi: 10.1186/s13643-018-0712-y

3. Cooper C, Fielding R, Visser M et al. Tools in the Assessment of Sarcopenia. Calcif Tissue Int 2013 Sep;93(3):201-210. doi: 10.1007/s00223-013-9757-z

4. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 2010; 39: 412-423. doi: 10.1093/ageing/afq034

5. Alfonso J Cruz-Jentoft, Gulistan Bahat, Jurgen Bauer et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019 Jan 1;48(1):16-31. doi: 10.1093/ageing/afy169

6. Nathan R. Hill, Samuel T. Fatoba, Jason L. Oke et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016; 11(7): e0158765. doi: 10.1371/journal.pone.0158765

7. Moon SJ, Kim TH, Yoon SY, Chung JH, Hwang H-J (2015) Relationship between Stage of Chronic Kidney Disease and Sarco-penia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011. PLoS ONE 10(6): e0130740. doi:10.1371/journal.pone.0130740

8. Ranjani N. Moorthi and Keith G. Avin. Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens 2017 May; 26(3): 219-228. doi: 10.1097/MNH.0000000000000318

9. D’Alessandro C, Piccoli G, Barsotti M et al. Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care. Nutrients 2018; 10, 1951. doi:10.3390/nu10121951

10. Лаврищева ЮВ, Румянцев АШ, Захаров МВ, Кулаева НН и др. Саркопения - актуальная проблема при хронической болезни почек 5Д стадии. Нефрология 2020;24(1):60-66. doi. org/10.36485/1561-6274-2020-24-1-60-66

11. Смирнов АВ, Голубев РВ, Коростелева НЮ, Румянцев АШ. Снижение физической работоспособности у больных, получающих заместительную почечную терапию: фокус на сар-копению. Нефрология 2017;21(4):9-29. doi.org/10.24884/1561-6274-2017-21-4-9-29

12. Kittiskulnam P. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis / P. Kittiskulnam [et al.]. Kidney Int 2017;92(1):238-247

13. Giglio, J. Association of Sarcopenia With Nutritional Parameters, Quality of Life, Hospitalization, and Mortality Rates of Elderly Patients on Hemodialysis / J. Giglio [et al.]. J Ren Nutr 2018;28(3):197-207

14. Evans W J, Campbell W W. Sarcopenia and Age-Related Changes in Body Composition and Functional Capacity. J Nutr 1993 Feb;123(2 Suppl):465-468. doi: 10.1093/jn/123.suppl_2.465

15. Butler RN. Did You Say 'Sarcopenia'? Geriatrics 1993 Feb;48(2):11-12

16. Rogers MA, Evans WJ. Changes in Skeletal Muscle With Aging: Effects of Exercise Training. Exerc Sport Sci Rev 1993;21:65-102

17. Sarodnik C, Bours SPG, Schaper NC. The Risks of Sar-copenia, Falls and Fractures in Patients With Type 2 Diabetes Mellitus. Maturitas 2018 Mar;109:70-77. doi: 10.1016/j.maturi-tas.2017.12.011

18. Maryam Ebadi, Rahima A Bhanji, Vera C Mazurak. Sarcope-nia in Cirrhosis: From Pathogenesis to Interventions. J Gastroenterol 2019 Oct;54(10):845-859. doi: 10.1007/s00535-019-01605-6

19. Jarin Chindapasirt. Sarcopenia in Cancer Patients. Asian Pac J Cancer Prev 2015;16(18):8075-8077. doi: 10.7314/apjcp.2015.16.18.8075

20. Souza VAd, Oliveira D, Barbosa SR et al. (2017) Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS One 2017 Apr 27;12(4):e0176230. doi: 10.1371/journal.pone.0176230

21. Emiko Sato, Takefumi Mori, Eikan Mishima. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sar-copenia in chronic kidney disease. Sci Rep 2016 Nov 10;6:36618. doi: 10.1038/srep36618

22. Yuki Enoki, Hiroshi Watanabe, Riho Arake. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep 2016 Aug 23;6:32084. doi: 10.1038/srep32084

23. Yi-Wen Wang, Ting-Yun Lin, Ching-Hsiu Peng. Factors Associated With Decreased Lean Tissue Index in Patients With Chronic Kidney Disease. Nutrients 2017 Apr 27;9(5):434. doi: 10.3390/nu9050434

24. Liu D, Black BL, Derynck R. TGF-b inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001; 15: 2950-2966

25. Tom F O'Sullivan, Alice C Smith, Emma L Watson. Satellite Cell Function, Intramuscular Inflammation and Exercise in Chronic Kidney Disease. Clin Kidney J 2018 Dec;11(6):810-821. doi: 10.1093/ckj/sfy052

26. Kristien Daenen, Asmin Andries, Djalila Mekahli. Oxidative Stress in Chronic Kidney Disease. Pediatr Nephrol 2019 Jun;34(6):975-991. doi: 10.1007/s00467-018-4005-4

27. Jorge L Gamboa, Frederic T Billings 4th, Matthew T Bo-janowski. Mitochondrial Dysfunction and Oxidative Stress in Patients With Chronic Kidney Disease. Physiol Rep 2016 May;4(9):e12780. doi: 10.14814/phy2.12780

28. Hirobumi Asai, Junya Hirata, Mie Watanabe-Akanuma. Indoxyl Glucuronide, a Protein-Bound Uremic Toxin, Inhibits Hypoxia-Inducible Factor dependent Erythropoietin Expression Through Activation of Aryl Hydrocarbon Receptor. Biochem Biophys Res Commun 2018 Oct 2;504(2):538-544. doi: 10.1016/j. bbrc.2018.09.018

29. Liesl Wandrag, Mario Siervo, Heather L Riley. Does Hypoxia Play a Role in the Development of Sarcopenia in Humans? Mechanistic Insights From the Caudwell Xtreme Everest Expedition. Redox Biol 2017 Oct;13:60-68. doi: 10.1016/j.redox.2017.05.004

30. Hirofumi Hamano, Yasumasa Ikeda, Hiroaki Watanabe. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant 2017;1-12. doi: 10.1093/ndt/gfx252

31. Yunan Zhou, Matthias Hellberg, Philippa Svensson et al. Sarcopenia and Relationships Between Muscle Mass, Measured Glomerular Filtration Rate and Physical Function in Patients With Chronic Kidney Disease Stages 3-5. Nephrol Dial Transplant 2018 Feb 1;33(2):342-348. doi: 10.1093/ndt/gfw466

32. Rf^ssa A Pereira, Antonio C Cordeiro, Carla M Avesani. Sarcopenia in Chronic Kidney Disease on Conservative Therapy: Prevalence and Association With Mortality. Nephrol Dial Transplant 2015 Oct;30(10):1718-1725. doi: 10.1093/ndt/gfv133

33. Gang Jee Ko, Yoshitsugu Obi, Amanda R Tortorici, Kamyar Kalantar-Zadeh. Dietary Protein Intake and Chronic Kidney Disease. Curr Opin Clin Nutr Metab Care 2017 Jan;20(1):77-85. doi: 10.1097/MCO.0000000000000342

34. Lamarca F, Carrero JJ, Rodrigues JCD et al. Prevalence of Sarcopenia in Elderly Maintenance Hemodialysis Patients: The Impact of Different Diagnostic Criteria. J Nutr Health Aging 2014 Jul;18(7):710-717. doi: 10.1007/s12603-014-0505-5

35. Hongqi Ren, Dehua Gong, Fengyu Jia et al. Sarcopenia in Patients Undergoing Maintenance Hemodialysis: Incidence Rate, Risk Factors and Its Effect on Survival Risk. Ren Fail 2016;38(3):364-371. doi: 10.3109/0886022X.2015.1132173

36. Гасанов МЗ. Молекулярные аспекты патогенеза сар-копении при хронической болезни почек: интегративная роль mTOR. Нефрология 2018;22(5):9-16. doi.org/10.24884/1561-6274-2018-22-5-9-16

37. Crowe AV, McArdle A, McArdle F et al. Markers of oxidative stress in the skeletal muscle of patients on haemodialysis. Nephrol Dial Transplant 2007;22:1177-1183

38. Chanutin A, Ludewig S. Experimental renal insufficiency produced by partial nephrectomy. V Diets containing whole dried meat. Arch Intern Med 1936; 58:60-80

39. May RC, Kelly RA, Mitch WE. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis. J Clin Invest 1987; 79:1099-1103

40. De Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009; 20:2075-2084

41. Ballmer PE et al. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest 1995; 95:39-45

42. Reaich D et al. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation. Am J Physiol 1993; 265:E230-E235

43. Mitch WE, et al. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphatedependent pathway involving ubiquitin and proteasomes. J Clin Invest 1994; 93:2127-2133

44. May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J Clin Invest 1986; 77:614-621

45. Price SR, England BK, Bailey JL, Van Vreede K, Mitch WE. Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am J Physiol 1994; 267:C955-C960

46. Bailey JL, England BK, Long RC Jr, Weissman J, Mitch WE. Experimental acidemia and muscle cell pH in chronic acidosis and renal failure. Am J Physiol 1995

47. Nicola Baldini and Sofia Avnet et al. The Effects of Systemic and Local Acidosis on Insulin Resistance and Signaling. Int J Mol Sci 2019 Jan; 20(1): 126. doi: 10.3390/ijms20010126

48. Xiaonan H Wang, William E Mitch. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 2014 Sep;10(9):504-516. Doi: 10.1038/nrneph.2014.112

49. Hu Z, Wang H, Lee I H et al. (2010). PTEN Inhibition Improves Muscle Regeneration in Mice Fed a High-Fat Diet. Diabetes 59(6): 1312-1320. doi:10.2337/db09-1155

50. Daniela Verzola, Chiara Barisione, Daniela Picciotto et al. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int 2019 Mar;95(3):506-517. doi: 10.1016/j.kint.2018.10.010

51. Кузярова АС, Гасанов МЗ, Батюшин ММ, Голубева О.В. Миостатин при белково-энергетической недостаточности у пациентов на гемодиализе. Нефрология 2019;23(3):36-41. doi.org/10.24884/1561-6274-2019-23-3-36-41

52. Shozo Yano, Atsushi Nagai, Minoru Isomura et al. Relationship between Blood Myostatin Levels and Kidney Function: Shimane CoHRE Study. PLoS ONE 10(10): e0141035. doi:10.1371/journal.pone.0141035

53. Dong-Tao Wang, Ya-Jun Yang, Ren-Hua Huang et al. Myostatin Activates the Ubiquitin-Proteasome and AutophagyLysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease. Oxid Med Cell Longev 2015;2015:684965. doi: 10.1155/2015/684965

54. Zhang L, Rajan V, Lin E, Hu Z, Han HQ, Zhou X et al. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 2011; 25(5):1653-1663. doi: 10.1096/fj.10-176917

55. Cheung WW, Paik KH, Mak RH. Inflammation and cachexia in chronic kidney disease. Pediatr Nephrol. 2010 Apr;25(4):711-724. doi: 10.1007/s00467-009-1427-z

56. Liping Zhang, Jie Du, Zhaoyong Hu et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 2009 Mar;20(3):604-612. doi: 10.1681/ASN.2008060628

57. Eduardo A Oliveira, Wai W Cheung, Kalodiah G Toma, Robert H Mak. Muscle wasting in chronic kidney disease. Pediatr Nephrol 2018 May;33(5):789-798. doi: 10.1007/s00467-017-3684-6

58. Jayanta Gupta, Nandita Mitra, Peter A Kanetsky et al. Association between albuminuria, kidney function, and inflammatory biomarker profile. Clin J Am Soc Nephrol 2012 Dec;7(12):1938-1946. doi: 10.2215/CJN.03500412

59. Liangyou Rui, Minsheng Yuan, Daniel Frantz et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 2002 Nov 1;277(44):42394-42398. doi: 10.1074/jbc.C200444200

60. Liping Zhang, Jenny Pan, Yanjun Dong et al. Stat3 activation links a C/EBP6 to myostatin pathway to stimulate loss of muscle mass. Cell Metab 2013 Sep 3;18(3):368-379. doi: 10.1016/j.cmet.2013.07.012

61. Hiroshi Watanabe, Yuki Enoki, and Toru Maruyama. Sar-copenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biol Pharm Bull 2019;42(9):1437-1445. doi: 10.1248/bpb.b19-00513

62. Simone Vettoretti, Lara Caldiroli, Silvia Armelloni et al. Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD. Nutrients 2019 Jun 19;11(6):1378. doi: 10.3390/nu11061378

63. Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise. Exerc Immunol Rev 2012;18:42-97

64. Vassilios Liakopoulos, Stefanos Roumeliotis, Xenia Gorny et al. Oxidative stress in hemodialysis patients: a review of the literature. Oxid Med Cell Longev 2017;2017:3081856. doi: 10.1155/2017/3081856

65. Jonathan Himmelfarb, Peter Stenvinkel, T Alp Ikizler, Raymond M Hakim. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002 Nov;62(5):1524-1538. doi: 10.1046/j.1523-1755.2002.00600.x

66. Sandhya Sriram, Subha Subramanian, Durga Sathia-kumar et al. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-kB. Aging Cell 2011 Dec;10(6):931-948. doi: 10.1111/j.1474-9726.2011.00734.x

67. Donald E Wesson, Jan Simoni, Kristine Broglio, Simon Sheather. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol 2011 Apr;300(4):F830-837. doi: 10.1152/ajprenal.00587.2010

68. Marion Vallet, Marie Metzger, Jean-Philippe Haymann. Urinary ammonia and long-term outcomes in chronic kidney disease. Kidney Int 2015 Jul;88(1):137-145. doi: 10.1038/ki.2015.52

69. Ling XC, Kuo K. Oxidative stress in chronic kidney disease. Ren Replace Ther 2018;4:53. doi.org/10.1186/s41100-018-0195-2

70. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 2016 Jul 20;25(3):119-146. doi: 10.1089/ars.2016.6665

71. Vassilios Liakopoulos, Stefanos Roumeliotis, Xenia Gorny et al. Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxid Med Cell Longev 2017;2017:3081856. doi: 10.1155/2017/3081856

72. Flore Duranton, Gerald Cohen, Rita De Smet et al. and on behalf of the European Uremic Toxin Work Group. Normal and Pathologic Concentrations of Uremic Toxins. JASN May 2012, ASN.2011121175; doi: https://doi.org/10.1681/ASN.2011121175

73. Yuki Enoki, Hiroshi Watanabe, Riho Arake et al. Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction. J Cachexia Sarcopenia Muscle 2017 Oct;8(5):735-747. doi: 10.1002/jcsm.12202

74. Koppe L, Pillon NJ, Vella RE, et al. P-Cresyl Sulfate Promotes Insulin Resistance Associated with CKD. J Am Soc Nephrol 2013 Jan;24(1):88-99. doi: 10.1681/ASN.2012050503

75. Yabuuchi J, Ueda S, Nao N. Association between asymmetric dimethylarginine and sarcopenia/frailty in hemodialysis patients. Kidney International Reports 2019;4:S1-S437

76. Kim JK, Choi SR, Choi MJ et al. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr 2014; 33(1):64±8. https://doi.org/10.1016/j.clnu.2013.04.002

77. Fahal IH. Uraemic sarcopenia: aetiology and implications. Nephrology Dialysis Transplantation 2013;29(9):1655-1665. doi:10.1093/ndt/gft070

78. Maja Pajek, Alexander Jerman, Josko Osredkar, Jadranka Buturovic Ponikvar, Jernej Pajek. Association of Uremic Toxins and Inflammatory Markers with Physical Performance in Dialysis Patients. Toxins (Basel) 2018 Oct 1;10(10):403. doi: 10.3390/toxins10100403

79. Vandana Menon, Hocine Tighiouart, Nubia Smith Vaughn et al. Serum bicarbonate and long-term outcomes in CKD. Am J Kidney Dis 2010 Nov;56(5):907-914. doi: 10.1053/j.ajkd.2010.03.023

80. Hirai K, Ookawara S, Morishita Y. Sarcopenia and physical inactivity in patients with chronic kidney disease. Nephrourol Mon 2016; 8(3):e37443. https://doi.org/10.5812/numonthly.37443

81. Honda H, Qureshi AR, Axelsson J et al. Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am J Clin Nutr 2007 Sep;86(3):633-638. doi: 10.1093/ajcn/86.3.633


Для цитирования:


Гасанов М.З. Саркопения у пациентов с хронической болезнью почек: распространенность, особенности патогенеза и клиническое значение. Нефрология. 2021;25(1):47-58. https://doi.org/10.36485/1561-6274-2021-25-1-47-58

For citation:


Gasanov M.Z. Sarcopenia in patients with chronic kidney disease: prevalence, pathogenesis and clinical significance. Nephrology (Saint-Petersburg). 2021;25(1):47-58. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-1-47-58

Просмотров: 196


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)