Preview

Нефрология

Расширенный поиск

Принципы ведения гломерулярных болезней (часть 2): итоги согласительной конференции Kidney disease: improving global outcomes (KDIGO) по спорным вопросам

https://doi.org/10.36485/1561-6274-2021-25-1-96-119

Полный текст:

Аннотация

По инициативе KDIGO (Kidney Disease: Improving Global Outcomes) в ноябре 2017 года была организована конференция по спорным вопросам в отношении гломерулярных болезней. В фокусе конференции были клинические рекомендации KDIGO 2012 года и новый взгляд на номенклатуру, патогенез, диагностику и лечение гломерулярных болезней, сформировавшийся с момента публикации рекомендаций. В ходе конференции Рабочая группа рассмотрела данные в отношении патогенеза, биомаркеров и лечения с целью выявления областей, где мнения экспертов совпадают и где разнятся. Данный отчет суммирует результаты дискуссии по первичным подоцитопатиям, волчаночному нефриту, АНЦА-ассоциированному нефриту, комплемент-опосредованным поражениям почек и моноклональной гаммапатии ренального значения.

Об авторах

Брэд Х. Ровин
Университет штата Огайо, медицинский центр Уэкснер
Соединённые Штаты Америки

Подразделение Нефрологии

Колумбия, Огайо


Доун Дж. Кастер
Университет Школа медицины Луисвилла
Соединённые Штаты Америки

Отделение медицины

Луисвилл, Кентуки


Дэниел К. Каттран
Главный научно-исследовательский институт г. Торонто, Университетская сеть здравоохранения
Канада
Торонто, Онтарио


Кейша Л. Гибсон
Нефрологический центр Чапел-Хилла Университета Северной Каролины
Соединённые Штаты Америки
Чапел-Хилл, Северная Каролина


Джонатан Дж. Хоган
Университет Пенсильвании
Соединённые Штаты Америки

Подразделение Нефрологии

Филадельфия, Пенсильвания



Маркус Дж. Мюллер
Рейнско-Вестфальский технический университет
Германия

Подразделение нефрологии и клинической иммунологии

Аахен


Дарио Рокателло
Университет Турина
Италия

Центр исследования иммунопатологии и редких заболеваний, отделение нефрологии и диализа (член Европейской ассоциации редких болезней почек)



Майкл Чеунг
KDIGO
Бельгия
Brussels


Дэвид К. Вилер
Университетский колледж
Великобритания
Лондон


Вольфганг К. Винкелмайер
Медицинский колледж Бэйлор
Соединённые Штаты Америки
Сельцманский институт здоровья почек, Секция Нефрологии, Отделение медициныХьюстон, Техас 


Юрген Флёге
Рейнско-Вестфальский технический университет г. Аахена
Германия

Юрген Флёге - Подразделение Нефрологии и клинической Иммунологии.

Пау-элсштрассе 30, 52057 Аахен



Список литературы

1. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl 2012;2:139-274. doi: 10.1038/kisup.2012.12

2. Corwin HL, Schwartz MM, Lewis EJ. The importance of sample size in the interpretation of the renal biopsy. Am J Nephrol 1988; 8:85-89. doi: 10.1159/000167563

3. Vivarelli M, Massella L, Ruggiero B et al. Minimal change disease. Clin J Am Soc Nephrol 2017;12:332-345. doi: 10.2215/CJN.05000516

4. Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2017;12:502-517. doi: 10.2215/CJN.05960616

5. De Vriese AS, Sethi S, Nath KA et al. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach. J Am Soc Nephrol 2018;29:759-774. doi: 10.1681/ASN.2017090958

6. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 1974;2:556-560. doi: 10.1016/s0140-6736(74)91880-7

7. Maas RJ, Deegens JK, Wetzels JF. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol Dial Transplant 2014;29:2207-2216. doi: 10.1093/ndt/gfu355

8. Hayek SS, Sever S, Ko YA et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med 2015;373:1916-1925. doi: 10.1056/NEJMoa1506362

9. Clement LC, Avila-Casado C, Mace C et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoidsensitive nephrotic syndrome. Nat Med 2011;17:117-122. doi: 10.1038/nm.2261

10. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010;5:2115-2121. doi: 10.2215/CJN.03800609

11. Shin JI, Kronbichler A. Rituximab for patients with nephrotic syndrome. Lancet 2015;385:225-226. doi: 10.1016/S0140-6736(15)60050-2

12. Novelli R, Gagliardini E, Ruggiero B et al. Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Am J Physiol Renal Physiol 2016;310:F335-F341. doi: 10.1152/ajpre-nal.00510.2015

13. Shankland SJ, Smeets B, Pippin JW et al. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol 2014;10:158-173. doi: 10.1038/nrneph.2014.1

14. D’Agati VD, Fogo AB, Bruijn JA et al. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 2004;43:368-382. doi: 10.1053/j.ajkd.2003.10.024

15. D’Agati VD, Alster JM, Jennette JC et al. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin J Am Soc Nephrol 2013;8:399-406. doi: 10.2215/CJN.06100612

16. Smeets B, Stucker F, Wetzels J et al. Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease. Am J Pathol 2014;184:3239-3248. doi: 10.1016/j.aj-path.2014.08.007

17. Gbadegesin RA, Winn MP, Smoyer WE. Genetic testing in nephrotic syndrome - challenges and opportunities. Nat Rev Nephrol 2013;9:179-184. doi: 10.1038/nrneph.2012.286

18. Lovric S, Ashraf S, Tan W et al. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2016;31:1802-1813. doi: 10.1093/ndt/gfv355

19. Sadowski CE, Lovric S, Ashraf S et al. A single-gene cause in 29.5 % of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279-1289. doi: 10.1681/ASN.2014050489

20. Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS et al. Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol 2017;28:3055-3065. doi: 10.1681/ASN.2016101121

21. Trautmann A, Bodria M, Ozaltin F et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol 2015;10:592-600. doi: 10.2215/CJN.06260614

22. Teeninga N, Kist-van Holthe JE, van Rijswijk N et al. Extending prednisolone treatment does not reduce relapses in childhood nephrotic syndrome. J Am Soc Nephrol 2013;24:149-159. doi: 10.1681/ASN.2012070646

23. Sinha A, Saha A, Kumar M et al. Extending initial prednisolone treatment in a randomized control trial from 3 to 6 months did not significantly influence the course of illness in children with steroidsensitive nephrotic syndrome. Kidney Int 2015;87:217-224. doi: 10.1038/ki.2014.240

24. Yoshikawa N, Nakanishi K, Sako M et al. A multicenter randomized trial indicates initial prednisolone treatment for childhood nephrotic syndrome for two months is not inferior to six-month treatment. Kidney Int 2015;87:225-232. doi: 10.1038/ki.2014.260

25. Yadav M, Sinha A, Hari P, Bagga A. Efficacy of low-dose daily versus alternate day prednisone in children with frequently relapsing nephrotic syndrome (FRNS): open-label randomized controlled trial (RCT). Abstract FP-S25-09. Pediatr Nephrol 2016;31:1752

26. Iijima K, Sako M, Nozu K et al. Rituximab for childhoodonset, complicated, frequently relapsing nephrotic syndrome or steroiddependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2014;384:1273-1281. doi: 10.1016/S0140-6736(14)60541-9

27. Kim AH, Chung JJ, Akilesh S et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2017;2.pii:81836. doi: 10.1172/jci.insight.81836

28. Gellermann J, Weber L, Pape L et al. Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol 2013;24:1689-1697. doi: 10.1681/ASN.2012121200

29. Masse V, Al Jijakli A, Genet P et al. Screening and management of hepatitis B virus before the first rituximab infusion: We must do better! Blood 2014;124:2754. Available at: http://www.bloodjournal.org/content/124/21/2754. Accessed March 15, 2018. doi: 0.1182/blood.V124.21.2754.2754

30. Sethi S, Haas M, Markowitz GS et al. Mayo Clinic/Renal Pathology Society Consensus report on pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol 2016;27:1278-1287. doi: 10.1681/ASN.2015060612

31. Fervenza FC, Sethi S, Glassock RJ. Idiopathic membra-noproliferative glomerulonephritis: does it exist? Nephrol Dial Transplant 2012;27:4288-4294. doi: 10.1093/ndt/gfs288

32. Nasr SH, Galgano SJ, Markowitz GS et al. Immunofluorescence on pronase-digested paraffin sections: a valuable salvage technique for renal biopsies. Kidney Int 2006;70:2148-2151. doi: 10.1038/sj.ki.5001990

33. Larsen CP, Ambuzs JM, Bonsib SM et al. Membranous-like glomerulopathy with masked IgG kappa deposits. Kidney Int 2014;86:154-161. doi: 10.1038/ki.2013.548

34. Messias NC, Walker PD, Larsen CP. Paraffin immunofluorescence in the renal pathology laboratory: more than a salvage technique. Mod Pathol 2015;28:854-860. doi: 10.1038/mod-pathol.2015.1

35. Larsen CP, Messias NC, Walker PD et al. Membranoprolif-erative glomerulonephritis with masked monotypic immunoglobulin deposits. Kidney Int 2015;88:867-873. doi: 10.1038/ki.2015.195

36. Sethi S, Nasr SH, De Vriese AS et al. C4d as a diagnostic tool in proliferative GN. J Am Soc Nephrol 2015;26:2852-2859. doi: 10.1681/ASN.2014040406

37. Andeen NK, Yang HY, Dai DF et al. DnaJ homolog subfamily B member 9 is a putative autoantigen in fibrillary GN. J Am Soc Nephrol 2018;29:231-239. doi: 10.1681/ASN.2017050566

38. Dasari S, Alexander MP, Vrana JA et al. DnaJ heat shock protein family B member 9 is a novel biomarker for fibrillary GN. J Am Soc Nephrol 2018;29:51-56. doi: 10.1681/ASN.2017030306

39. Pickering MC, D’Agati VD, Nester CM et al. C3 glomerulopathy: consensus report. Kidney Int 2013;84:1079-1089. doi: 10.1038/ki.2013.377

40. Goodship TH, Cook HT, Fakhouri F et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 2017;91:539-551. doi: 10.1016/j.kint.2016.10.005

41. Servais A, Noel LH, Roumenina LT et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 2012;82:454-464. doi: 10.1038/ki.2012.63

42. Iatropoulos P, Daina E, Curreri M et al. Cluster analysis identifies distinct pathogenetic patterns in C3 glomerulopathies/ immune complexmediated membranoproliferative GN. J Am Soc Nephrol 2018;29:283-294. doi: 10.1681/ASN.2017030258

43. Zand L, Kattah A, Fervenza FC et al. C3 glomerulonephritis associated with monoclonal gammopathy: a case series. Am J Kidney Dis 2013;62:506-514. doi: 10.1053/j.ajkd.2013.02.370

44. Avasare RS, Canetta PA, Bomback AS et al. Mycophenolate mofetil in combination with steroids for treatment of C3 glomerulopathy: a case series. Clin J Am Soc Nephrol 2018;13:406-413. doi: 10.2215/CJN.09080817

45. Rabasco C, Cavero T, Roman E et al. Effectiveness of mycophenolate mofetil in C3 glomerulonephritis. Kidney Int 2015;88:1153-1160. doi: 10.1038/ki.2015.227

46. Caliskan Y, Torun ES, Tiryaki TO et al. Immunosuppressive treatment in C3 glomerulopathy: is it really effective? Am J Nephrol 2017;46:96-107. doi: 10.1159/000479012

47. Chauvet S, Fremeaux-Bacchi V, Petitprez F et al. Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy. Blood 2017;129:1437-1447. doi: 10.1182/blood-2016-08-737163

48. Vignon M, Cohen C, Faguer S et al. The clinicopathologic characteristics of kidney diseases related to monotypic IgA deposits. Kidney Int 2017;91:720-728. doi: 10.1016/j.kint.2016.10.026

49. Bonaud A, Bender S, Touchard G et al. A mouse model recapitulating human monoclonal heavy chain deposition disease evidences the relevance of proteasome inhibitor therapy. Blood 2015;126:757-765. doi: 10.1182/blood-2015-03-630277

50. Bridoux F, Javaugue V, Bender S et al. Unravelling the im-munopathological mechanisms of heavy chain deposition disease with implications for clinical management. Kidney Int 2017;91:423-434. doi: 10.1016/j.kint.2016.09.004

51. Cohen C, Royer B, Javaugue V et al. Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease. Kidney Int 2015;88:1135-1143. doi: 10.1038/ki.2015.201

52. Bridoux F, Leung N, Hutchison CA et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int 2015;87:698-711. doi: 10.1038/ki.2014.408

53. Gumber R, Cohen JB, Palmer MB et al. A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits. Kidney Int 2018;94:199-205. doi: 10.1016/j.kint.2018.02.020

54. Bhutani G, Nasr SH, Said SM et al. Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc 2015; 90: 587-596. doi: 10.1016/j.mayocp.2015.01.024

55. Kumar S, Paiva B, Anderson KC et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17:e328-e346. doi: 10.1016/S1470-2045(16)30206-6

56. Comenzo RL, Reece D, Palladini G et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 2012;26:2317-2325. doi: 10.1038/leu.2012.100

57. Palladini G, Dispenzieri A, Gertz MA et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol 2012;30:4541-4549. doi: 10.1200/JCO.2011.37.7614

58. Dimopoulos MA, Roussou M, Gavriatopoulou M et al. Outcomes of newly diagnosed myeloma patients requiring dialysis: renal recovery, importance of rapid response and survival benefit. Blood Cancer J 2017;7:e571. doi: 10.1038/bcj.2017.49

59. Palladini G, Hegenbart U, Milani P et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood 2014;124:2325-2332. doi: 10.1182/blood-2014-04-570010

60. Vignon M, Javaugue V, Alexander MP et al. Current anti-myeloma therapies in renal manifestations of monoclonal light chain-associated Fanconi syndrome: a retrospective series of 49 patients. Leukemia 2017;31:123-129. doi: 10.1038/leu.2016.195

61. Fermand JP, Bridoux F, Kyle RA et al. How I treat monoclonal gammopathy of renal significance (MGRS). Blood 2013;122:3583-3590. doi: 10.1182/blood-2013-05-495929

62. Sawinski D, Lim MA, Cohen JB et al. Patient and kidney allograft survival in recipients with end-stage renal disease from amyloidosis. Transplantation 2018;102:300-309. doi: 10.1097/TP.0000000000001930

63. Kidney Disease: Improving Global Outcomes (KDIGO) Hepatitis C Work Group. KDIGO 2018 clinical practice guideline on the prevention, diagnosis, evaluation, and treatment of hepatitis c in chronic kidney disease. Kidney Int Suppl 2018;8:91-165. doi: 10.1016/j.kisu.2018.06.001

64. Levine JW, Gota C, Fessler BJ et al. Persistent cryoglobulinemic vasculitis following successful treatment of hepatitis C virus. J Rheumatol 2005;32:1164-1167

65. Landau DA, Saadoun D, Halfon P et al. Relapse of hepatitis C virus associated mixed cryoglobulinemia vasculitis in patients with sustained viral response. Arthritis Rheum 2008;58:604-611. doi: 10.1002/art.23305

66. Ghosn M, Palmer MB, Najem CE et al. New-onset hepatitis C virus associated glomerulonephritis following sustained virologic response with direct-acting antiviral therapy. Clin Nephrol 2017;87:261-266. doi: 10.5414/CN109019

67. Artemova M, Abdurakhmanov D, Ignatova T et al. Persistent hepatitis C virus-associated cryoglobulinemic vasculitis following virus eradication after direct-acting antiviral therapy. Hepatology 2017;65:1770-1771. doi: 10.1002/hep.28981

68. Hogan J, Restivo M, Canetta PA et al. Rituximab treatment for Fibrillary glomerulonephritis. Nephrol Dial Transplant 2014;29:1925-1931. doi: 10.1093/ndt/gfu189

69. Javaugue V, Karras A, Glowacki F et al. Long-term kidney disease outcomes in fibrillary glomerulonephritis: a case series of 27 patients. Am J Kidney Dis 2013;62:679-690. doi: 10.1053/j.ajkd.2013.03.031

70. Kalbermatter SA, Marone C, Casartelli D et al. Outcome of Fibrillary glomerulonephritis. Swiss Med Wkly 2012;142:w13578. doi: 10.4414/smw.2012.13578

71. Nasr SH, Valeri AM, Cornell LD et al. Fibrillary glomerulonephritis: a report of 66 cases from a single institution. Clin J Am Soc Nephrol 2011;6:775-784. doi: 10.2215/CJN.08300910

72. Rosenstock JL, Markowitz GS, Valeri AM et al. Fibrillary and immunotactoid glomerulonephritis: distinct entities with different clinical and pathologic features. Kidney Int 2003;63:1450-1461. doi: 10.1046/j.1523-1755.2003.00853.x

73. Weening JJ, D’Agati VD, Schwartz MM et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 2004;65:521-530. doi: 0.1097/01.asn.0000108969.21691.5d

74. Yu F, Wu LH, Tan Y et al. Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of Nephrology and Renal Pathology Society system. Kidney Int 2010;77:820-829. doi: 10.1038/ki.2010.13

75. Wu LH, Yu F, Tan Y et al. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions. Kidney Int 2013; 83: 715-723. doi: 10.1038/ki.2012.409

76. Hu W, Chen Y, Wang S et al. Clinical-morphological features and outcomes of lupus podocytopathy. Clin J Am Soc Nephrol 2016;11:585-592. doi: 10.2215/CJN.06720615

77. Yu F, Haas M, Glassock R et al. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol 2017;13:483-495. doi: 10.1038/nrneph.2017.85

78. Yu F, Tan Y, Liu G et al. Clinicopathological characteristics and outcomes of patients with crescentic lupus nephritis. Kidney Int 2009;76:307-317. doi: 10.1038/ki.2009.136

79. Hsieh C, Chang A, Brandt D et al. Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res 2011;63:865-874. doi: 10.1002/acr.20441

80. Mejia-Vilet JM, Cordova-Sanchez BM, Uribe-Uribe NO et al. Prognostic significance of renal vascular pathology in lupus nephritis. Lupus 2017;26:1042-1050. doi: 10.1177/0961203317692419

81. Haring CM, Rietveld A, van den Brand JA et al. Segmental and global subclasses of class IV lupus nephritis have similar renal outcomes. J Am Soc Nephrol 2012;23:149-154. doi: 10.1681/ASN.2011060558

82. Schwartz MM, Korbet SM, Lewis EJ et al. The prognosis and pathogenesis of severe lupus glomerulonephritis. Nephrol Dial Transplant 2008;23:1298-1306. doi: 10.1093/ndt/gfm775

83. Bajema IM, Wilhelmus S, Alpers CE et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int 2018;93:789-796. doi: 10.1016/j.kint.2017.11.023

84. Petri M, Orbai AM, Alarcon GS et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012;64:2677-2686. doi: 10.1002/art.34473

85. Rijnink EC, Teng YKO, Kraaij T et al. Validation of the Systemic Lupus International Collaborating Clinics classification criteria in a cohort of patients with full house glomerular deposits. Kidney Int 2018;93:214-220. doi: 10.1016/j.kint.2017.07.017

86. Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011;365:2110-2121. doi: 0.1056/NEJMra1100359

87. Munroe ME, James JA. Genetics of lupus nephritis: clinical implications. Semin Nephrol 2015;35:396-409. doi: 10.1016/j.semnephrol.2015.08.002

88. Caster DJ, Korte EA, Nanda SK et al. ABIN1 dysfunction as a genetic basis for lupus nephritis. J Am Soc Nephrol 2013;24:1743-1754. doi: 10.1681/ASN.2013020148

89. Bomback AS, Gharavi AG. Lupus nephritis: ancestry, genetic risk and health disparities. Nat Rev Nephrol 2013;9:699-700. doi: 10.1038/nrneph.2013.210

90. Ceccarelli F, Perricone C, Borgiani P et al. Genetic factors in systemic lupus erythematosus: contribution to disease phenotype. J Immunol Res 2015:745647. doi: 10.1155/2015/745647

91. Freedman BI, Langefeld CD, Andringa KK et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol 2014;66:390-396. doi: 10.1002/art.38220

92. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1-150. doi: 10.1038/kisup.2012.76

93. Condon MB, Ashby D, Pepper RJ et al. Prospective observational singlecentre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 2013;72:1280-1286. doi: 10.1136/annrheumdis-2012-202844

94. Malvar A, Pirruccio P, Alberton V et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol Dial Transplant 2017;32:1338-1344. doi: 10.1093/ndt/gfv296

95. Parikh SV, Alvarado A, Malvar A et al. The kidney biopsy in lupus nephritis: past, present, and future. Semin Nephrol 2015;35:465-477. doi: 10.1016/j.semnephrol.2015.08.008.

96. Alvarado AS, Malvar A, Lococo B et al. The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients. Lupus 2014;23:840-847. doi: 10.1177/0961203313518625

97. Zickert A, Sundelin B, Svenungsson E et al. Role of early repeated renal biopsies in lupus nephritis. Lupus Sci Med 2014;1:e000018. doi: 10.1136/lupus-2014-000018

98. Dall’Era M, Cisternas MG, Smilek DE et al. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis cohort. Arthritis Rheumatol 2015;67:1305-1313. doi: 10.1002/art.39026

99. Tamirou F, D’Cruz D, Sangle S et al. Long-term followup of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis 2016;75:526-531. doi: 10.1136/annrheum-dis-2014-206897

100. Ugolini-Lopes MR, Seguro LPC, Castro MXF et al. Early proteinuria response: a valid real-life situation predictor of longterm lupus renal outcome in an ethnically diverse group with severe biopsy-proven nephritis? Lupus Sci Med 2017;4:e000213. doi: 10.1136/lupus-2017-000213

101. Birmingham DJ, Shidham G, Perna A et al. Spot PC ratio estimates of 24-hour proteinuria are more unreliable in lupus nephritis than in other forms of chronic glomerular disease. Ann Rheum Dis 2014;73:475-476. doi: 10.1136/annrheumdis-2013-203790

102. Yang XW, Tan Y, Yu F et al. Combination of anti-C1q and anti-dsDNA antibodies is associated with higher renal disease activity and predicts renal prognosis of patients with lupus nephritis. Nephrol Dial Transplant 2012;27:3552-3559. doi: 10.1093/ndt/gfs179

103. Orbai AM, Truedsson L, Sturfelt G et al. Anti-C1q antibodies in systemic lupus erythematosus. Lupus 2015;24:42-49. doi: 10.1177/0961203314547791

104. Soliman S, Mohan C. Lupus nephritis biomarkers. Clin Immunol 2017;185:10-20. doi: 10.1016/j.clim.2016.08.001

105. Phatak S, Chaurasia S, Mishra SK et al. Urinary B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL): potential biomarkers of active lupus nephritis. Clin Exp Immunol 2017;187:376-382. doi: 10.1111/cei.12894

106. Xuejing Z, Jiazhen T, Jun L et al. Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J Biomed Biotechnol 2012;2012:359647. doi: 10.1155/2012/359647

107. Reyes-Thomas J, Blanco I, Putterman C. Urinary biomarkers in lupus nephritis. Clin Rev Allergy Immunol 2011;40:138-150. doi: 10.1007/s12016-010-8197-z

108. Parikh SV, Malvar A, Song H et al. Molecular imaging of the kidney in lupus nephritis to characterize response to treatment. Transl Res 2017;182:1-13. doi: 10.1016/j.trsl.2016.10.010

109. Parikh SV, Malvar A, Song H et al. Characterising the immune profile of the kidney biopsy at lupus nephritis flare differentiates early treatment responders from non-responders. Lupus Sci Med 2015;2:e000112. doi: 10.1136/lupus-2015-000112

110. Banchereau R, Hong S, Cantarel B et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 2016;165:551-565. doi: 10.1016/j.cell.2016.03.008

111. Pons-Estel GJ, Alarcon GS, Burgos PI et al. Mestizos with systemic lupus erythematosus develop renal disease early while antimalarials retard its appearance: data from a Latin American cohort. Lupus 2013;22:899-907. doi: 10.1177/0961203313496339

112. Ugarte-Gil MF, Wojdyla D, Pastor-Asurza CA et al. Predictive factors of flares in systemic lupus erythematosus patients: data from a multiethnic Latin American cohort. Lupus 2018;27:536-544. doi: 10.1177/0961203317728810

113. Fessler BJ, Alarcon GS, McGwin G Jr et al. Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual. Arthritis Rheum 2005;52:1473-1480. doi: 10.1002/art.21039

114. Galindo-Izquierdo M, Rodriguez-Almaraz E, Pego-Reigo-sa JM et al. Characterization of patients with lupus nephritis included in a large cohort from the Spanish Society of Rheumatology Registry of Patients With Systemic Lupus Erythematosus (RELESSER). Medicine 2016;95:e2891. doi: 10.1097/MD.0000000000002891

115. Joo YB, Won S, Choi CB et al. Lupus nephritis is associated with more corticosteroid-associated organ damage but less corticosteroid nonassociated organ damage. Lupus 2017;26:598-605. doi: 10.1177/0961203316671813

116. Sciascia S, Mompean E, Radin M et al. Rate of adverse effects of medium- to high-dose glucocorticoid therapy in systemic lupus erythematosus: a systematic review of randomized control trials. Clin Drug Investig 2017;37:519-524. doi: 10.1007/s40261-017-0518-z

117. Roccatello D, Sciascia S, Baldovino S et al. A 4-year observation in lupus nephritis patients treated with an intensified B-lymphocyte depletion without immunosuppressive maintenance treatment: clinical response compared to literature and immunological re-assessment. Autoimmun Rev 2015;14:1123-1130. doi: 10.1016/j.autrev.2015.07.01

118. Ruiz-Irastorza G, Ugarte A, Saint-Pastou Terrier C et al. Repeated pulses of methyl-prednisolone with reduced doses of prednisone improve the outcome of class III, IV and V lupus nephritis: an observational comparative study of the Lupus-Cruces and lupus-Bordeaux cohorts. Autoimmun Rev 2017;16:826-832. doi: 10.1016/j.autrev.2017.05.017

119. Liu Z, Zhang H, Liu Z et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med 2015;162:18-26. doi: 10.7326/M14-1030

120. Zhang H, Liu Z, Zhou M et al. Multitarget therapy for maintenance treatment of lupus nephritis. J Am Soc Nephrol 2017;28:3671-3678. doi: 10.1681/ASN.2017030263

121. Dooley MA, Jayne D, Ginzler EM et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med 2011;365:1886-1895. doi: 10.1056/NEJMoa1014460

122. Houssiau FA, D’Cruz D, Sangle S et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN Nephritis Trial. Ann Rheum Dis 2010;69:2083-2089. doi: 10.1136/ard.2010.131995

123. Lenz O, Waheed AA, Baig A et al. Lupus nephritis: maintenance therapy for lupus nephritis: Do we now have a plan? Clin J Am Soc Nephrol 2013;8:162-171. doi: 10.2215/CJN.03640412

124. Moroni G, Gallelli B, Quaglini S et al. Withdrawal of therapy in patients with proliferative lupus nephritis: long-term follow-up. Nephrol Dial Transplant 2006;21:1541-1548. doi: 10.1093/ndt/gfk073

125. Grootscholten C, Berden JH. Discontinuation of immunosuppression in proliferative lupus nephritis: is it possible? Nephrol Dial Transplant 2006;21:1465-1469. doi: 10.1093/ndt/gfl208

126. Ioannidis JP, Boki KA, Katsorida ME et al. Remission, relapse, and reremission of proliferative lupus nephritis treated with cyclophosphamide. Kidney Int 2000;57:258-264. doi: 10.1046/j.1523-1755.2000.00832.x

127. Mok CC, Ying KY, Tang S et al. Predictors and outcome of renal flares after successful cyclophosphamide treatment for diffuse proliferative lupus glomerulonephritis. Arthritis Rheum 2004; 50:2559-2568. doi: 10.1002/art.20364

128. Rovin BH, Furie R, Latinis K et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 2012;64:1215-1226. doi: 10.1002/art.34359

129. Duxbury B, Combescure C, Chizzolini C. Rituximab in systemic lupus erythematosus: an updated systematic review and meta-analysis. Lupus 2013;22:1489-1503. doi: 10.1177/0961203313509295

130. Shamliyan TA, Dospinescu P. Additional improvements in clinical response from adjuvant biologic response modifiers in adults with moderate to severe systemic lupus erythematosus despite immunosuppressive agents: a systematic review and meta-analysis. Clin Ther 2017;39:1479-1506. doi: 10.1016/j.clinthera.2017.05.359

131. Moroni G, Raffiotta F, Trezzi B et al. Rituximab vs myco-phenolate and vs cyclophosphamide pulses for induction therapy of active lupus nephritis: a clinical observational study. Rheumatology 2014;53:1570-1577. doi: 10.1093/rheumatology/ket46

132. Mok CC, Yap DY, Navarra SV et al. Overview of lupus nephritis management guidelines and perspective from Asia. Int J Rheum Dis 2013;16:625-636. doi: 10.1111/1756-185X.12212

133. Chavarot N, Verhelst D, Pardon A et al. Rituximab alone as induction therapy for membranous lupus nephritis: a multicenter retrospective study. Medicine 2017;96:e7429. doi: 10.1097/MD.0000000000007429

134. Song D, Wu LH, Wang FM et al. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res Ther 2013;15:R12. doi: 10.1186/ar414

135. Pattanashetti N, Anakutti H, Ramachandran R et al. Effect of thrombotic microangiopathy on clinical outcomes in Indian patients with lupus nephritis. Kidney Int Rep 2017;2:844-849. doi: 10.1016/j.ekir.2017.04.008

136. Chen MH, Chen MH, Chen WS et al. Thrombotic microangiopathy in systemic lupus erythematosus: a cohort study in North Taiwan. Rheumatology 2011;50:768-775. doi: 10.1093/rheumatology/keq31

137. Kronbichler A, Brezina B, Quintana LF et al. Efficacy of plasma exchange and immunoadsorption in systemic lupus erythematosus and antiphospholipid syndrome: a systematic review. Autoimmun Rev 2016;15:38-49. doi: 10.1016/j.autrev.2015.08.010

138. Sciascia S, Radin M, Yazdany J et al. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int 2017;37:1249-1255. doi: 10.1007/s00296-017-3686-5

139. de Holanda MI, Porto LC, Wagner T et al. Use of ecu-lizumab in a systemic lupus erythemathosus patient presenting thrombotic microangiopathy and heterozygous deletion in CFHR1-CFHR3: a case report and systematic review. Clin Rheumatol 2017;36:2859-2867. doi: 10.1007/s10067-017-3823-2

140. Legendre CM, Licht C, Muus P et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013;368:2169-2181. doi: 10.1056/NEJMoa1208981

141. Licht C, Greenbaum LA, Muus P et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int 2015;87:1061-1073. doi: 10.1038/ki.2014.423

142. Erkan D, Aguiar CL, Andrade D et al. 14th International Congress on Antiphospholipid Antibodies: task force report on antiphospholipid syndrome treatment trends. Autoimmun Rev 2014;13:685-696. doi: 10.1016/j.autrev.2014.01.053

143. Bienaime F, Legendre C, Terzi F et al. Antiphospholipid syndrome and kidney disease. Kidney Int 2017;91:34-44. doi: 10.1016/j.kint.2016.06.026

144. Canaud G, Bienaime F, Tabarin F et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med 2014;371:303-312. doi: 10.1056/NEJMoa1312890

145. Webster P, Wardle A, Bramham K et al. Tacrolimus is an effective treatment for lupus nephritis in pregnancy. Lupus 2014;23:1192-1196. doi: 10.1177/0961203314540353

146. O’Shaughnessy MM, Liu S, Montez-Rath ME et al. Kidney transplantation outcomes across GN subtypes in the United States. J Am Soc Nephrol 2017;28:632-644. doi: 10.1681/ASN.2016020126

147. Yu TM, Chen YH, Lan JL et al. Renal outcome and evolution of disease activity in Chinese lupus patients after renal transplantation. Lupus 2008;17:687-694. doi: 10.1177/0961203308089439

148. Yu TM, Wen MC, Li CY et al. Impact of recurrent lupus nephritis on lupus kidney transplantation: a 20-year single center experience. Clin Rheumatol 2012;31:705-710. doi: 10.1007/s10067-011-1931-y

149. Naranjo-Escobar J, Manzi E, Posada JG et al. Kidney transplantation for end-stage renal disease in lupus nephritis, a very safe procedure: a single Latin American transplant center experience. Lupus 2017;26:1157-1165. doi: 10.1177/0961203317696591

150. Contreras G, Mattiazzi A, Guerra G et al. Recurrence of lupus nephritis after kidney transplantation. J Am Soc Nephrol 2010; 21:1200-1207. doi: 10.1681/ASN.2009101093

151. Briganti EM, Russ GR, McNeil JJ et al. Risk of renal allograft loss from recurrent glomerulonephritis. N Engl J Med 2002;347:103-109. doi: 10.1056/NEJMoa013036

152. Mina R, von Scheven E, Ardoin SP et al. Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus. Arthritis Care Res 2012;64:375-383. doi: 10.1002/acr.21558

153. Hugle B, Silverman ED, Tyrrell PN et al. Presentation and outcome of paediatric membranous non-proliferative lupus nephritis. Pediatr Nephrol 2015;30:113-121. doi: 10.1007/s00467-014-2908-2

154. Pereira M, Muscal E, Eldin K et al. Clinical presentation and outcomes of childhood-onset membranous lupus nephritis. Pediatr Nephrol 2017;32:2283-2291. doi: 10.1007/s00467-017-3743-z

155. Groot N, de Graeff N, Marks SD et al. European evidencebased recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: the SHARE initiative. Ann Rheum Dis 2017;76:1965-1973. doi: 10.1136/annrheumdis-2017-211898

156. Jennette JC, Nachman PH. ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol 2017;12:1680-1691. doi: 10.2215/CJN.02500317

157. Roth AJ, Ooi JD, Hess JJ et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest 2013;123:1773-1783. doi: 10.1172/JCI65292

158. Lionaki S, Blyth ER, Hogan SL et al. Classification of antineutrophil cytoplasmic autoantibody vasculitides: the role of antineutrophil cytoplasmic autoantibody specificity for myeloperoxidase or proteinase3 in disease recognition and prognosis. Arthritis Rheum 2012;64:3452-3462. doi: 10.1002/art.34562

159. Walsh M, Flossmann O, Berden A et al. Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 2012;64:542-548. doi: 10.1002/art.33361

160. Lyons PA, Rayner TF, Trivedi S et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med 2012;367:214-223. doi: 10.1056/NEJMoa1108735

161. Schreiber A, Xiao H, Jennette JC et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 2009;20:289-298. doi: 10.1681/ASN.2008050497

162. Caster DJ, Powell DW, Miralda I et al. Re-examining neutrophil participation in GN. J Am Soc Nephrol 2017;28:2275-2289. doi: 10.1681/ASN.2016121271

163. Diaz-Crespo F, Villacorta J, Acevedo M et al. The predictive value of kidney biopsy in renal vasculitis: a multicenter cohort study. Hum Pathol 2016;52:119-127. doi: 10.1016/j.hum-path.2016.01.015

164. Tomasson G, Grayson PC, Mahr AD et al. Value of ANCA measurements during remission to predict a relapse of ANCA-asso-ciated vasculitis: a meta-analysis. Rheumatology 2012;51:100-109. doi: 10.1093/rheumatology/ker280

165. Mukhtyar C, Lee R, Brown D et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann Rheum Dis 2009;68:1827-1832. doi: 10.1136/ard.2008.101279

166. Exley AR, Bacon PA, Luqmani RA et al. Development and initial validation of the Vasculitis Damage Index for the standardized clinical assessment of damage in the systemic vasculitides. Arthritis Rheum 1997;40:371-380. doi: 10.1002/art.1780400222

167. Monach PA, Warner RL, Tomasson G et al. Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis. Ann Rheum Dis 2013;72:1342-1350. doi: 10.1136/annrheumdis-2012-201981

168. Ishizaki J, Takemori A, Suemori K et al. Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Res Ther 2017;19:218. doi: 10.1186/s13075-017-1429-3

169. O’Reilly VP, Wong L, Kennedy C et al. Urinary soluble CD163 in active renal vasculitis. J Am Soc Nephrol 2016;27:2906-2916. doi: 10.1681/ASN.2015050511

170. Jayne DRW, Bruchfeld AN, Harper L et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol 2017;28:2756-2767. doi: 10.1681/ASN.2016111179

171. Stone JH, Merkel PA, Spiera R et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 2010;363:221-232. doi: 10.1056/NEJMoa0909905

172. Specks U, Merkel PA, Seo P et al. Efficacy of remissioninduction regimens for ANCA-associated vasculitis. N Engl J Med 2013;369:417-427. doi: 10.1056/NEJMoa1213277

173. Geetha D, Specks U, Stone JH et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis with renal involvement. J Am Soc Nephrol 2015;26:976-985. doi: 10.1681/ASN.2014010046

174. Unizony S, Villarreal M, Miloslavsky EM et al. Clinical outcomes of treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis based on ANCA type. Ann Rheum Dis 2016;75:1166-1169. doi: 10.1136/annrheumdis-2015-208073

175. Miloslavsky EM, Lu N, Unizony S et al. Myeloperoxidase-antineutrophil cytoplasmic antibody (ANCA)-positive and ANCA-negative patientswith granulomatosis with polyangiitis (Wegener’s): distinct patient subsets. Arthritis Rheumatol 2016;68:2945-2952. doi: 10.1002/art.39812

176. Jones RB, Tervaert JW, Hauser T et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med 2010;363:211-220. doi: 10.1056/NEJMoa0909169

177. Jones RB, Furuta S, Tervaert JW et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis: 2-year results of a randomised trial. Ann Rheum Dis 2015;74:1178-1182. doi: 10.1136/annrheumdis-2014-206404

178. Karras A, Pagnoux C, Haubitz M et al. Randomised controlled trial of prolonged treatment in the remission phase of ANCA-associated vasculitis. Ann Rheum Dis 2017;76:1662-1668. doi: 10.1136/annrheumdis-2017-211123

179. Roccatello D, Sciascia S, Rossi D et al. The "4 plus 2" rituximab protocol makes maintenance treatment unneeded in patients with refractory ANCA-associated vasculitis: a 10 years observation study. Oncotarget 2017;8:52072-52077. doi: 10.18632/oncotarget.18120

180. Jones RB, Ferraro AJ, Chaudhry AN et al. A multicenter survey of rituximab therapy for refractory antineutrophil cytoplasmic antibodyassociated vasculitis. Arthritis Rheum 2009;60:2156-2168. doi: 10.1002/art.24637

181. Rhee EP, Laliberte KA, Niles JL. Rituximab as maintenance therapy for anti-neutrophil cytoplasmic antibody-associated vasculitis. Clin J Am Soc Nephrol 2010;5:1394-1400. doi: 10.2215/CJN.08821209

182. Cartin-Ceba R, Golbin JM, Keogh KA et al. Rituximab for remission induction and maintenance in refractory granulomatosis with polyangiitis (Wegener’s): ten-year experience at a single center. Arthritis Rheum 2012;64:3770-3778. doi: 10.1002/art.34584

183. Roubaud-Baudron C, Pagnoux C, Meaux-Ruault N et al. Rituximab maintenance therapy for granulomatosis with polyangiitis and microscopic polyangiitis. J Rheumatol 2012;39:125-130. doi: 10.3899/jrheum.110143

184. Smith RM, Jones RB, Guerry MJ et al. Rituximab for remission maintenance in relapsing antineutrophil cytoplasmic antibodyassociated vasculitis. Arthritis Rheum 2012;64:3760-3769. doi: 10.1002/art.34583

185. Guillevin L, Pagnoux C, Karras A et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med 2014;371: 1771-1780. doi: 10.1056/NEJMoa1404231

186. Roccatello D. How I treat" autoimmune diseases: state of the art on the management of rare rheumatic diseases and ANCA-associated systemic idiopathic vasculitis. Autoimmun Rev 2017;16:995-998. doi: 10.1016/j.autrev.2017.07.015

187. Wilkinson NM, Page J, Uribe AG et al. Establishment of a pilot pediatric registry for chronic vasculitis is both essential and feasible: a Childhood Arthritis and Rheumatology Alliance (CARRA) survey. J Rheumatol 2007;34:224-226

188. Cabral DA, Canter DL, Muscal E et al. Comparing presenting clinical features in 48 children with microscopic polyangiitis to 183 children who have granulomatosis with polyangiitis (Wegener’s): an ARChiVe Cohort Study. Arthritis Rheumatol 2016;68:2514-2526. doi: 10.1002/art.39729

189. Eleftheriou D, Melo M, Marks SD et al. Biologic therapy in primary systemic vasculitis of the young. Rheumatology 2009;48:978-986. doi: 10.1093/rheumatology/kep148

190. James KE, Xiao R, Merkel PA et al. Clinical course and outcomes of childhood-onset granulomatosis with polyangiitis. Clin Exp Rheumatol 2017; 35 (suppl 103): 202-208


Рецензия

Для цитирования:


Ровин Б., Кастер Д., Каттран Д., Гибсон К., Хоган Д., Мюллер М., Рокателло Д., Чеунг М., Вилер Д., Винкелмайер В., Флёге Ю. Принципы ведения гломерулярных болезней (часть 2): итоги согласительной конференции Kidney disease: improving global outcomes (KDIGO) по спорным вопросам. Нефрология. 2021;25(1):96-119. https://doi.org/10.36485/1561-6274-2021-25-1-96-119

For citation:


Rovin B., Caster D., Cattran D., Gibson K., Hogan J., Moeller M., Roccatello D., Cheung M., Wheeler D., Winkelmayer W., Floege J. Management and treatment of glomerular diseases (part 2): Conclusions From A Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Nephrology (Saint-Petersburg). 2021;25(1):96-119. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-1-96-119

Просмотров: 1089


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)