Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Патогенез внелегочного поражения органов при инфицировании коронавирусом SARS-CоV-2 (аналитический обзор)

https://doi.org/10.36485/1561-6274-2021-25-2-18-26

Полный текст:

Аннотация

За последние два десятилетия коронавирусная инфекция вызвала две масштабные пандемии: атипичную пневмонию (SARS) в 2002 г. и острый респираторный синдром (MERS) на Ближнем Востоке в 2012 г. В декабре 2019 года новый коронавирус (КВ) SARS-CoV-2 вызвал вспышку пневмонии в г. Ухань, Китай. Специалисты Всемирной организации здравоохранения (ВОЗ) подтвердили риск данного заболевания для общественного здоровья всей планеты. SARS-CoV-2 был выделен из эпителиальных клеток дыхательных путей человека. Было обнаружено, что генотип КВ SARS-CoV-2 ближе к bat-SL-CoVZC45 и bat-SL-CoVZXC21, а спайковый гликопротеин (СБ) вируса, определяющий возможность связывания с клеточным рецептором, подобен коронавирусу SARS-CoV, ответственному за вспышку тяжелого острого респираторного синдрома (ТОРС/SARS) в 2002 г.]. Ангиотензин-превращающий фермент 2 (АПФ2) является эндогенным спайковым белком (спайковый гликопротеин с S-доменом) SARS-CoV-2, который в составе комплекса АПФ2+SARS-CoV-2 связывается с рецептором АПФ2, находящимся на мембране клетки-мишени. В статье рассматриваются механизмы заражения SARS-CoV-2, межклеточные взаимодействия и пути передачи инфекции. Подробно освещены вопросы эпидемиологии COVID-19 и перспективы вовлечения других органов и систем, кроме дыхательной, в поддержание вирусной нагрузки. Выявлены проблемы иммунной защиты организма человека при инфицировании SARS-CoV-2. Проведены клинические параллели с вирусами-предшественниками, а именно SARS-CoV-1 и MERS-CoV. Выделены факторы риска инфицированности SARS-CoV-2, позволяющие прогнозировать характер течения и вероятные исходы COVID-19.

Об авторах

А. С. Литвинов
Общество с ограниченной ответственностью «Медицинский центр “Агидель”»; Партнерство с ограниченной ответственностью «Metaco LLP»
Россия

Литвинов Александр Сергеевич, канд. мед. наук; ведущий научный специалист; заместитель генерального директора по медицинской части

450000, г. Уфа, ул. Карла Маркса, д. 48/2

Тел.: +7(347)246-38-16

 г. Лондон



А. В. Савин
Общество с ограниченной ответственностью «ЮгЭкоСервис»; Ограниченное партнерство «Медицинская клиника “Гармония”»
Россия

Савин Альберт Владимирович, врач-нефролог, ведущий специалист

344022, Россия, г. Ростов-на-Дону, ул. Красноармейская, д. 170



А. А. Кухтина
Московский государственный медико-стоматологический университет им. А.И. Евдокимова
Россия

Кухтина Алина Алексеевна, врач-ординатор

127473, Россия, Москва, ул. Делегатская, д. 20, стр. 1

Тел.: 8(903)624-77-28



Д. А. Ситовская
Российский научно-исследовательский нейрохирургический институт им. проф. А. Л. Поленова (филиал Национального медицинского исследовательского центра им. В.А. Алмазова); Городская Мариинская больница; Санкт-Петербургский государственный педиатрический медицинский университет
Россия

Ситовская Дарья Александровна, научно-исследовательская лаборатории патоморфологии нервной системы, научн. сотр.

191014, Россия, Санкт-Петербург, ул. Маяковского, д. 12



Список литературы

1. De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14:523-534. doi: 10.1038/nrmicro.2016.81

2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020. doi: 10.1002/jmv.25681

3. Zhu N. A novel coronavirus from patients with pneumonia in China 2019. N Engl J Med. Available at: www.nejm.org/doi/full/10.1056/NEJMoa2001017

4. Lu R. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020. doi: 10.1016/S0140-6736(20)30251-8

5. Ji W, Wang W, Zhao X et al. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J Med Virol 2020;92:433-440. doi: 10.1002/jmv.25682

6. Rice GI, Thomas DA, Grant PJ et al. Evaluation of angiotensin converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 2004;383:45-51

7. Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. TIPS 2002;23:177-183

8. Chappell MC. Emerging evidence for a functional angiotesinconverting enzyme 2-angiotensin-(1-7) mas receptor axis; more than regulation of blood pressure? Hypertension 2007;50:596-599

9. Chappell MC, Modrall JG, Diz DI, Ferrario CM. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. In: Suzuki H, Saruta T, editors. Kidney and Blood Pressure Regulation. Basel; Karger: 2004

10. Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin converting enzyme. Hypertensionn1998; 31:362-367

11. Vickers C, Hales P, Kaushik V et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002;277:14838-14843

12. Oudit GY, Herzenberg AM, Kassiri Z et al. Loss of angiotensinconverting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Patho 2006;168:1808-1820

13. Ye M, Wysocki J, William J et al. Glomerular localization and expression of angiotension-converting enzyme 2 and angiotensinconverting enzyme: Implications for albuminemia in diabetes. J Am Soc Nephrol 2006;17:3067-3075

14. Pendergrass KD, Pirro NT, Westwood BM et al. Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol 2008;295:10-20

15. Prieto MC, Gonzalez-Villalobos RA, Botros FT et al. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. Am J Physiol Renal Physiol 2011;300:749-755

16. Allred AJ, Diz DI, Ferrario CM, Chappell MC. Pathways for angiotensin-(1-7) metabolism in pulmonary and renal tissues. Am J Physiol 2000;279:841-850

17. Chappell MC, Allred AJ, Ferrario CM. Pathways of angiotensin-( 1-7) metabolism in the kidney. Nephrol Dial Transplant 2001;16:22-26

18. Chappell MC, Gomez MN, Pirro NT, Ferrario CM. Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensinconverting enzyme inhibition. Hypertension 2000;35:348-352

19. Velez JC, Ryan KJ, Harbeson CE et al. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension 2009;53:790-797

20. Yamamoto K, Chappell MC, Brosnihan KB, Ferrario CM. In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertensionn1992; 19:692-696

21. Sampaio WO, dos Santos RA, Faria-Silva R et al. Angiotensin-(1-7) through receptor mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007;49:185-192

22. Weiss D, Kools JJ, Taylor WR. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in ApoEdeficient mice. Circulation 2001;103:448-454

23. Su Z, Zimpelmann J, Burns KD. Angiotensin-(1-7) inhibitis angiotensin II stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int 2006;69: 2212-2218

24. Iyer SN, Yamada K, Diz DI et al. Evidence that prostaglandins mediate the antihypertensive actions of angiotensin (1-7) during chronic blockade of the renin angiotensin system. J Cardiovasc Pharmacol 2000;36:109-117

25. Giani JF, Munoz MC, Pons RA et al. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol 2011;300:272-282

26. Yamamoto K, Chappell MC, Brosnihan KB, Ferrario CM. In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertension 1992;19:692-696

27. Zhang J, Noble NA, Border WA, Huang Y. Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am J Physiol Renal Physiol 2010;298:579-588

28. Soler MJ, Wysocki J, Ye M et al. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin induced diabetic mice. Kid Int 2007;72:614-623

29. Tikellis C, Bialkowski K, Pete J et al. ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes. Diabetes 2008;57:1018-1025

30. Wong DW, Oudit GY, Reich H et al. Loss of angiotensinconverting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol 2007;171:438-451

31. Glowacka I, Bertram S, Muller MA et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 2011;85:4122-4134

32. Bertram S, Dijkman R, Habjan M et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 2013;87:6150-6160

33. Abe M, Tahara M, Sakai K et al. TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol 2013;87:11930-11935

34. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 2013;87:12552-12561

35. Heurich A, Hofmann-Winkler H, Gierer S et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014;88:1293-1307

36. Vaarala MH, Porvari KS, Kellokumpu S et al. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol 2001;193:134-140

37. Chen YW, Lee MS, Lucht A et al. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol 2010;176:2986-2996

38. Donaldson SH, Hirsh A, Li DC et al. Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 2002;277:8338-8345

39. Chen YW, Lee MS, Lucht A et al. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol 2010;176:2986-2996

40. Wilson S, Greer B, Hooper J et al. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 2005;388:967-972

41. Bottcher-Friebertshauser E, Freuer C, Sielaff F et al. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol 2010;84:5605-5614

42. Bottcher E, Matrosovich T, Beyerle M et al. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 2006;80:9896-9898

43. Shulla A, Heald-Sargent T, Subramanya G et al. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011;85:873-882

44. Hamming I, Timens W, Bulthuis ML. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol 2004;203:631-637. Available at: www.onlinelibrary.wiley.com/doi/abs/10.1002/path.1570/

45. Sims AC, Baric RS, Yount B. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol 2005;79:15511-15524. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316022/

46. Vieira Braga FA, Kar G, Berg M. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 2019;25:1153-1163. Available at: https://www.nature.com/articles/s41591-019-0468-5

47. Xu Y, Mizuno T, Sridharan A. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 2016;1:134-139

48. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; Feb 17. doi: 10.1016/j.bbrc.2020.02.071

49. Hashimoto T, Perlot T, Rehman A et al. ACE2 links amino acid malnutrition to microbial ecology andf intestinal inflammation. Nature 2012;487(7408):477-481. doi: 10.1038/nature11228

50. Hui DSC, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect. Dis Clin 2019;33:869-889. Available at: https://www.sciencedirect.com/science/article/pii/S0891552019300571?via%3Dihub//Ho

51. lshue ML, DeBolt C, Lindquist S. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; Jan 31. Available at: https://www.nejm.org/doi/full/10.1056/NEJMoa2001191?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed

52. Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020. doi: 10.1001/jama.2020.1585

53. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020. doi: 10.1016/S0140-6736(20)30183-5

54. Guan W, Ni Z, Hu Y et al. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv 2020. doi: 10.1101/2020.02.06.20020974

55. Zhao Y, Zhao Z, Wang Y et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan COVID-19. medRxiv 2020. doi: 10.1101/2020.01.26.919985

56. Xu X. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020. doi: 10.1007/s11427-020-1637-5

57. Zou X. The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection. Front Med 2020. Available at: www.journal.hep.com.cn/fmd/EN/10.1007/s11684-020-0754-0

58. Zhou P. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020. doi: 10.1038/s41586-020-2012-7

59. Li W. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-454. doi: 10.1038/nature02145

60. Hofmann H. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA 2005;102:7988-7993. doi: 10.1073/pnas.0409465102

61. Zhao Y. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Preprint 2020. Available at: www.biorxiv.org/content/10.1101/2020.01.26.919985v1

62. Zhang H. The digestive system is a potential route of 2019- nCov infection: a bioinformatics analysis based on single-cell transcriptomes. Preprint 2020. Available at: https://www.biorxiv.org/content/10.1101/2020.01.30.927806v1

63. Chai X. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. Preprint 2020. Available at: www.biorxiv.org/content/10.1101/2020.02.03.931766v1

64. Crackower MA, Sarao R, Oudit GY et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002;417(6891):822-828. doi: 10.1038/nature00786

65. Danilczyk U, Sarao R, Remy C et al. Essential role for collectrin in renal amino acid transport. Nature 2006;444(7122):1088-1091. doi: 10.1038/nature05475

66. Gu J, Gong E, Zhang B et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005;202(3):415-424. doi: 10.1084/jem.20050828

67. Ding Y, He L, Zhang Q et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004;203:622-630. doi: 10.1002/path.1560

68. Hamming I, Timens W, Bulthuis MLC et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J Pathol 2004;203:631-663. doi: 10.1002/path.1570

69. Ren X. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. J Gen Virol 2006;87:1691-1695. doi: 10.1099/vir.0.81749-0

70. Xu H, Zhong L, Deng J et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8

71. Al-Tawfiq JA, Zumla, Memish ZA. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Travel Med Infect Dis 2014;12:422-428. doi: 10.1016/j.tmaid.2014.06.007

72. Zhou P, Yang X.-L, Wang X-G et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;12:23-28. doi: 10.1038/s41586-020-2012-7

73. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5

74. Wan Y, Shang J, Graham R et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol 2020;46:35-36. doi: 10.1128/JVI.00127-20

75. Li F. Structure, function, and evolution of coronavirus spike proteins. Ann Rev Virol 2016;3:237-261

76. Simmons G, Zmora P, Gierer S et al. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013;100:605-614

77. Matsuyama S. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010;84:12658-12664

78. Bertram S. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 2011;85:13363-13372

79. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009;106:5871-5876

80. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864-1868

81. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015;202:120-134

82. Woodward Davis AS, Roozen HN, Dufort MJ et al. The human tissue-resident CCR5(+) T cell compartment maintains protective and functional properties during inflammation. Sci Transl Med 2019;11(521):871-878. doi: 10.1126/scitranslmed.aaw8718

83. Yao XH, Li TY, He ZC. A pathological report of three COVID-19 cases by minimally invasive autopsies. Nature 2020;24:132-133. doi: 10.3760/cma.j.cn112151-20200312-00193. 32172546

84. Diao B, Feng Z, Wang C et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MedRxiv 2020;200: 31-36

85. Xu D, Zhang H, Gong H et al. Identification of a Potential Mechanism of Acute Kidney Injury During the Covid-19 Outbreak: A Study Based on Single-Cell Transcriptome Analysis. Preprints 2020. Available at: www.preprints.org/manuscript/202002.0331/v1

86. Haddadi S, Vaseghi-Shanjani M, Yao Y et al. Mucosal-Pull Induction of Lung-Resident Memory CD8 T Cells in Parenteral TB Vaccine-Primed Hosts Requires Cognate Antigens and CD4 T Cells. Front Immunol 2019;10:2075. doi: 10.3389/fimmu.2019.02075


Для цитирования:


Литвинов А.С., Савин А.В., Кухтина А.А., Ситовская Д.А. Патогенез внелегочного поражения органов при инфицировании коронавирусом SARS-CоV-2 (аналитический обзор). Нефрология. 2021;25(2):18-26. https://doi.org/10.36485/1561-6274-2021-25-2-18-26

For citation:


Litvinov A.S., Savin A.V., Kukhtina A.A., Sitovskaya D.A. Pathogenesis of extrapulmonary organ damage in SARS-CоV-2 coronavirus infection (analytical review). Nephrology (Saint-Petersburg). 2021;25(2):18-26. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-2-18-26

Просмотров: 323


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)