Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Роль эпигенетических механизмов в патогенезе диабетической нефропатии

https://doi.org/10.36485/1561-6274-2021-25-2-35-42

Полный текст:

Аннотация

Диабетическая нефропатия (ДН) является хроническим осложнением диабета и наиболее распространенной причиной развития терминальной стадии почечной недостаточности (ТСПН). Были предложены многочисленные факторы, как способствующие развитию ДН, так и участвующие в её патогенезе. Однако молекулярные механизмы, которые приводят к развитию ДН, остаются на сегодняшний день не вполне понятными. В последнее время с развитием высокопроизводительных технологий появляются доказательства, свидетельствующие об эпигенетических механизмах регуляции экспрессии генов, включая метилирование ДНК, некодирующие РНК и гистоновые модификации, которые играют ключевую роль в патогенезе ДН посредством вторичной регуляции генов. Все эти данные могут способствовать созданию новых, более эффективных диагностических и терапевтических технологий для ДН.

Об авторах

К. А. Айтбаев
НИИ молекулярной биологии и медицины при Национальном центре кардиологии и терапии им. акад. Мирсаида Миррахимова
Кыргызстан

Айтбаев Кубаныч Авенович, д-р мед. наук

720040, Кыргызстан, г. Бишкек, ул. Т. Молдо, д. 3

Тел.: (312) 66-25-13



И. Т. Муркамилов
Кыргызская государственная медицинская академия им. И.К. Ахунбаева; Кыргызско-Российский славянский университет
Кыргызстан

Муркамилов Илхом Торобекович, канд. мед. наук, исполняющий обязанности доцента кафедры факультетской терапии; старший преподаватель кафедры терапии №2 медицинского факультета

720020, г. Бишкек, ул. Ахунбаева, д. 92

Тел.: (312) 62-09-91



В. В. Фомин
Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия

Чл.-кор. РАН Виктор Викторович Фомин, д-р мед. наук, зав. каф. факультетской терапии №1, проректор по клинической работе и дополнительному профессиональному образованию

119146, Россия, Москва, ул. Большая Пироговская, д. 6

Тел.: 8 (499) 248-62-22



Ж. А. Муркамилова
Кыргызско-Российский Славянский университет
Кыргызстан

Муркамилова Жамила Абдилалимовна, заочный аспирант

Кыргызстан, 720000, г. Бишкек, ул. Киевская, д. 44

Тел.: (+996) 552435009



Ф. А. Юсупов
Ошский государственный университет
Кыргызстан

Фуркат Абдулахатович Юсупов, д-р мед. наук, Зав. каф. неврологии, психиатрии и нейрохирургии медицинского факультета Ошского; Главный невролог Южного региона

714000, г. Ош, ул. Ленина, д. 331

Тел.: (+996) 557202071



Список литературы

1. Шестакова МВ, Шамхалова МШ, Ярек-Мартынова ИЯ и др. Сахарный диабет и хроническая болезнь почек: достижения, нерешенные проблемы и перспективы лечения. Сахарный диабет 2011; 14 (1): 81-88

2. Камышова ЕС, Бобкова ИН, Кутырина ИМ. Современные представления о роли микроРНК при диабетической нефропатии: потенциальные биомаркеры и мишени таргетной терапии. Сахарный диабет 2017; 20 (1):42-50. https://doi.org/10.14341/DM8237

3. Regele F, Jelencsics K, Shiffman D et al. Genome-wide studies to identify risk factors for kidney disease with a focus on patients with diabetes. Nephrology Dialysis Transplantation 2015; 30 (4): iv26–iv34. https://doi.org/10.1093/ndt/gfv087

4. Cowie CC, Port FK, Wolfe RA et al. Disparities in incidence of diabetic endstage renal disease according to race and type of diabetes. New England Journal of Medicine 1989; 321(16):1074–1079. https://doi.org/10.1056/NEJM198910193211603

5. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nature Reviews Endocrinology 2010; 6(12):665–675. https://doi.org/10.1038/nrendo.2010.188

6. Portela A, Esteller M. Epigenetic modifications and human disease. Nature Biotechnology 2010; 28 (10):1057–1068. https:// doi.org/10.1038/nbt.1685

7. Thomas MC. Epigenetic mechanisms in diabetic kidney disease. Current Diabetes Reports 2016;16:3:31. https://doi.org/10.1007/s11892-016-0723-9

8. Jones PA. Functions of DNA methylation: islands, startsites, gene bodies and beyond. Nature Reviews Genetics 2012; 13 (7):484–492. https://doi.org/10.1038/nrg3230

9. Barres R, Osler ME, Yan J et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metabolism 2009; 10(3):189–198. https://doi.org/10.1016/j.cmet.2009.07.011

10. Marumo T, Yagi S, Kawarazaki W et al. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. Journal of the American Society of Nephrology 2015; 26 (10):2388–2397. https://doi.org/10.1681/ASN.2014070665

11. Wu R, Wang L, Yin R, et al. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatorydriven colon cancer. Molecular Carcinogenesis 2020. https://doi.org/10.1002/mc.23146

12. Gu HF. Genetic and epigenetic studies in diabetic kidney disease. Frontiers in genetics 2019;10:507. https://doi.org/10.3389/fgene.2019.00507

13. Bell CG, Teschendorff AE, Rakyan VK et al. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics 2010;3:33. https://doi.org/10.1186/1755-8794-3-33

14. Sapienza C, Lee J, Powell J et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 2011; 6(1):20–28. https://doi.org/10.4161/epi.6.1.13362

15. Hasegawa K, Wakino S, Simic P et al. Renal tubular sirt1 attenuates diabetic albuminuria by epigenetically suppressing claudin-1 overexpression in podocytes. Nature Medicine 2013; 19(11):1496–1504. https://doi.org/10.1038/nm.3363

16. Ko Y-A, Mohtat D, Suzuki M et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biology 2013;14(10): article R108. https://doi.org/10.1186/gb-2013-14-10-r108

17. Bechtel W, McGoohan S, Zeisbergetal EM. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nature Medicine 2010;5:16:544–550. https://doi.org/10.1038/nm.2135

18. Pirola L, Balcerczyk A, Tothill RW et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Research 2011; 21(10):1601–1615. https://doi.org/10.1101/gr.116095.110

19. Liang F, Holt I, Pertea G et al. Gene index analysis of the human genome estimates approximately 120,000 genes. Nature Genetics 2000; 25(2): 239–240. https://doi.org/10.1038/76126

20. Kapranov P, Cawley SE, Drenkow J et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 2002; 296 (5569):916–919. Doi: 10.1126/science.1068597

21. Djebali S, Davis CA, Merkel A et al. Landscape of transcription in human cells. Nature 2012;489:101–108. https://doi.org/10.1038/nature11233

22. Consortium Encode Project. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74. https://doi.org/10.1038/nature11247

23. Okazaki Y, Furuno M, Kasukawa T et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002; 420: 563–573. https://doi.org/10.1038/nature01266

24. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136 (2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

25. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 2014;1:42:D68–D73. https://doi.org/10.1093/nar/gkt1181

26. Sun Y, Koo S, White N et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic acids research 2004; 32(22): article e188. https://doi.org/10.1093/nar/gnh186

27. Tian Z, Greene AS, Pietrusz JL et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Research 2008; 18(3):404–411. https://doi.org/10.1101/gr.6587008

28. Wu H, Kong L, Zhou S et al. The role of microRNAs in diabetic nephropathy. Journal of Diabetes Research 2014; 2014: article ID 920134, 12 pages. https://doi.org/10.1155/2014/920134

29. Kato M, Zhang J, Wang M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America 2007;104(9):3432–3437. https://doi.org/10.1073/pnas.0611192104

30. Chung ACK, Huang XR, Meng X, Lan XY. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. Journal of the American Society of Nephrology 2010; 21(8):1317–1325. https://doi.org/10.1681/ASN.2010020134

31. Krupa A, Jenkins R, DongLuo D et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. Journal of the American Society of Nephrology 2010; 21(3):438–447. https://doi.org/10.1681/ASN.2009050530

32. Wang B, Herman-Edelstein M, Koh P et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes 2010;59(7):1794–1802. https://doi.org/10.2337/db09-1736

33. Kato M, Natarajan R. Diabetic nephropathy-emerging epigenetic mechanisms. Nature Reviews Nephrology 2014;10 (9):517–530. https://doi.org/10.1038/nrneph.2014.116

34. Deshpande SD, Putta S, Wang M et al. Transforming growth factor-β-induced cross talk between p53 and a MicroRNA in the pathogenesis of diabetic nephropathy. Diabetes 2013; 62(9):3151–3162. https://doi.org/10.2337/db13-0305

35. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets. Annals of the New York Academy of Sciences 2015; 1353:72–88. https://doi.org/10.1111/nyas.12758

36. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Journal of the American Society of Nephrology 2012; 23(3):458–469. https://doi.org/10.1681/ASN.2011050485

37. Jia Y, Guan M, Zheng Z et al. MiRNAs in urine extracellular vesicles as predictors of early-stage diabetic nephropathy. Journal of Diabetes Research 2016; 2016: Article ID 7932765, 10 pages. https://doi.org/10.1155/2016/7932765

38. Kato M, Arce L, Wang M et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney International 2011; 80(4): 358–368. https://doi.org/10.1038/ki.2011.43

39. Zhong X, Chung ACK, Chen HY et al. MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 2013; 56(3):663–674. https://doi.org/10.1007/s00125-012-2804-x

40. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry 2012; 81: 145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

41. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136 (4):629–641. https://doi.org/10.1016/j.cell.2009.02.006

42. Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Current Biology 2010; 20 (19):R858–R861. https://doi.org/10.1016/j.cub.2010.08.052

43. Yang X, Tao L, Zhu J, Zhang S. Long Noncoding RNA FTX Reduces Hypertrophy of Neonatal Mouse Cardiac Myocytes and Regulates the PTEN/PI3K/Akt Signaling Pathway by Sponging MicroRNA-22. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 2019;25:9609-9617. https://doi.org/10.12659/MSM.919654

44. Reichelt-Wurm S, Wirtz T, Chittka D, et al. Glomerular expression pattern of long non-coding RNAs in the type 2 diabetes mellitus BTBR mouse model. Scientific reports 2019;9:1:1-13. https://doi.org/10.1038/s41598-019-46180-1 45. Kato M, Putta S, Wang M et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biology 2009;11(7):881–889. https://doi.org/10.1038/ncb1897

45. Kato M, Dang V, Wang M et al. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Science Signaling 2013;6 (278): article no. ra43. https://doi.org/10.1126/scisignal.2003389

46. Kato M, Wang M, Chen Z et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nature Communications 2016;7: article 12864. https://doi.org/10.1038/ncomms12864

47. Zhou Q, Chung ACK, Huang XR, Dong Y, Yu X, Lan HY. Identification of novel long noncoding rnas associated with TGF-β/ Smad3-mediated renal inflammation and fibrosis by RNA sequencing. American Journal of Pathology 2014;184(2):409-417. https:// doi.org/10.1016/j.ajpath.2013.10.007

48. Long J, Badal SS, Ye Z et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. Journal of Clinical Investigation 2016;126(11):4205–4218. https:// doi.org/10.1172/JCI87927

49. Ji P, Diederichs S, Wang W et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003;22 (39):8031–8041. https://doi.org/10.1038/sj.onc.1206928

50. Liu J.-Y, Yao J, Li X.-M et al. Pathogenic role of lncRNA MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death and Disease 2014; 5: article ID e1506. https://doi.org/10.1038/cddis.2014.466

51. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. Journal of Cellular and Molecular Medicine 2015; 19 (6):1418–1425. https://doi.org/10.1111/jcmm.12576

52. Kouzarides T. Chromatin modifications and their function. Cell 2007;128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005

53. Liu R, Lee K, He JC. Genetics and epigenetics of diabetic nephropathy. Kidney Diseases 2015; 1(1):42–51. https:// doi.org/10.1159/000381796

54. El-Osta A, Brasacchio D, Yao D et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine 2008; 205:2409–2417. https://doi.org/10.1084/jem.20081188 56. Sun G, Reddy MA,Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. Journal of the American Society of Nephrology 2010; 21 (12):2069–2080. https://doi.org/10.1681/ASN.2010060633

55. Bock F, Shahzad K, Wang H et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proceedings of the National Academy of Sciences of the United States of America 2013; 110 (2): 648–653. https://doi.org/10.1073/pnas.1218667110

56. Sulaiman MK. Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetology & metabolic syndrome 2019;11:1:7. https://doi.org/10.1186/s13098-019-0403-4

57. Raval N, Kumawat A, Kalyane D, Kalia K, Tekade RK. Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. Drug Discovery Today 2020. https://doi.org/10.1016/j.drudis.2020.01.008

58. Li M, Guo Q, Cai H et al. miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. Journal of cellular physiology 2020;235:4:3362-3371. https://doi.org/10.1002/jcp.29224

59. Nascimento LR, Domingueti CP. MicroRNAs: new biomarkers and promising therapeutic targets for diabetic kidney disease. Brazilian Journal of Nephrology 2019. AHEAD. http:// dx.doi.org/10.1590/2175-8239-jbn-2018-0165

60. Lai JY, Luo J, O’Connor C et al. MicroRNA-21 in glomerular injury. Journal of the American Society of Nephrology 2015;26 (4):805–816. DOI: https://doi.org/10.1681/ASN.2013121274

61. Mohan A, Singh RS, Kumari M et al. Urinary exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats. PLoS ONE 2016;11(4):article ID e0154055. https:// doi.org/10.1371/journal.pone.0154055

62. Dounousi E, Duni A, Leivaditis K et al. Improvements in the management of diabetic nephropathy. Review of Diabetic Studies 2015;12(1-2):119–133. https://doi.org/10.1900/RDS.2015.12.119

63. Tonna S, El-Osta A, Cooper ME, Tikellis C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nature Reviews Nephrology 2010;6(6):332–341. https://doi.org/10.1038/nrneph.2010.55


Для цитирования:


Айтбаев К.А., Муркамилов И.Т., Фомин В.В., Муркамилова Ж.А., Юсупов Ф.А. Роль эпигенетических механизмов в патогенезе диабетической нефропатии. Нефрология. 2021;25(2):35-42. https://doi.org/10.36485/1561-6274-2021-25-2-35-42

For citation:


Aitbaev K.A., Murkamilov I.T., Fomin V.V., Murkamilova Zh.A., Yusupov F.A. The role of epigenetic mechanisms in the pathogenesis of diabetic nephropathy. Nephrology (Saint-Petersburg). 2021;25(2):35-42. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-2-35-42

Просмотров: 195


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)