Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Нефропротективное действие новых сахароснижающих препаратов: глифлозины

https://doi.org/10.36485/1561-6274-2021-25-4-11-22

Полный текст:

Аннотация

Обзор посвящен рассмотрению нефропротективного действия и его механизмов у новых сахароснижающих препаратов глифлозинов, выявленных в ходе крупномасштабных рандомизированных плацебо-контролируемых испытанийи экспериментальных исследований. Выяснилось, что ингибирование натрий-глюкозного котранспортера 2 (SGLT2) в проксимальных канальцах почек при использовании этих препаратов не только приводит к уменьшению уровня глюкозы в крови, снижению артериального давления, массы тела, содержанию мочевой кислоты в плазме крови, но также задерживает прогрессирование хронической болезни почек, угнетая развитие диабетической нефропатии. Этоблагоприятный эффект является многофакторным. Он обусловлен диуретическим и натрийуретическим действием, уменьшением уровня альбуминурии, ослаблением глюкотоксичности в клетках почечных канальцев, гемодинамическим воздействием на функцию почек и прямым противовоспалительным эффектом. Обсуждается, почему при применении ингибиторов SGLT2 восстанавливается тубулогломерулярная обратная связь, нарушаемая в начальный период диабетической нефропатии и ведущая к гиперфильтрации в оставшихся нефронах. Приводятся сведения о восстановлении нарушенной функции митохондрий благодаря позитивному влиянию препаратов на ионный состав клеток почечных канальцев. Это в значительной степени способствует усилению аутофагии, опосредованного лизосомами пути деградации и удаления поврежденных органелл и нормализующей внутриклеточный гомеостаз. Рассматривается вероятный механизм усиления аутофагии через повышение активности сенсоров энергетической депривации клеток AMPK и SIRT1. Обсуждаются возможные механизмы развития противовоспалительного и антиоксидантного действия ингибиторов SGLT2 через подавление активности инфламмасомы. Рассматривается вопрос о возможном применении глифлозинов при хронической болезни почек, патогенез которой не связан с сахарным диабетом.

Об авторах

Я. Ф. Зверев
Алтайский государственный медицинский университет
Россия

Проф. Зверев Яков Федорович, д-р мед. наук, кафедра фармакологии, профессор

656038, г. Барнаул, пр. Ленина, д. 40

Тел.: (3852)566891



А. Я. Рыкунова
Барнаульский юридический институт
Россия

Рыкунова Анна Яковлевна, канд. мед. наук, кафедра криминалистики, старший преподаватель

656038, г. Барнаул, ул. Чкалова, д. 49

Тел.: (3852)379163



Список литературы

1. Gaede P, Lund-Andersen H, Parving H-H, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008;358(6):580-591. https://doi.org/10.1056/NEJMoa0706245

2. Garofalo C, Borrelli S, Liberti ME et al. SGLT2 inhibitors: nephroprotective efficacy and side effects. Medicina 2019;55: 268-281. https://doi.org/10.3390/medicina55060268

3. Barutta F, Bernardi S, Gargiulo G et al. SGLT2 inhibition to address the unmet needs in diabetic nephropathy. Diabetic Metab Res Rev 2019;35(7):e3171. https://doi.org/10.1002/dmrr.3171

4. Салухов ВВ, Демидова ТЮ. Эмпаглифлозин как новая стратегия управления исходами у пациентов с сахарным диабетом 2 типа и высоким кардиоваскулярным риском. Сахарный диабет 2016;19(6):494-510. https://doi.org/10.14341/DM8216

5. Мосикян АА, Чжао В, Галанкин ТЛ, Колбин АС. Анализ исследований EMPAREG OUTCOME, LEADER и SUSTAIN-6: возможные механизмы снижения сердечно-сосудистого риска под действием новых сахароснижающих средств. Клиническая фармакология и терапия 2017;26(2):77-82

6. Кобалава ЖД, Киякбаев ГК. Сахарный диабет 2 типа и сердечно-сосудистые осложнения: можно ли улучшить прогноз назначением сахароснижающих препаратов? Российский кардиологический журнал 2018;23(8):79-91. https://doi.org/10.15829/1560-4071-2018-8-79-91

7. Кобалава ЖД, Лазарев ПВ, Виллевальде СВ. Ингибиторы SGLT2: обоснование и перспективы применения при сердечной недостаточности. Кардиология 2018;58(2):42-54. https://doi.org/10.18087/cardio.2018.2.10087

8. Шестакова МВ. Исследование DECLARETIMI 58 в контексте EMPAREG OUTCOME и CANVAS. Сахарный диабет 2019;22(6):592-601. https://doi.org/10.14341/DM10289

9. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and progression of kidney disease in Type 2 diabetes. N Engl J Med 2016;375(4):323-334. https://doi.org/10.1056/NEJMoa1515920

10. Mosenzon O, Wiviott SD, Cahn A et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARETIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019;7(8):606-617. https://doi.org/10.1016/S2213-8587(19)30180-9

11. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and cardiovascular and renal events in Type 2 diabetes. N Engl J Med 2017;377(7):644-657. https://doi.org/10.1056/NEJMoa1611925

12. Bonora BM, Avogaro A, Fadini GP. Extraglycemic effects of SGLT2 inhibitors: a review of evidence. Diabetes Metab Syndr Obes 2020;13:161-174. https://doi.org/10.2147/DMSO.S233538

13. Perkovic V, de Zeeuw D, Mahaffey KW et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomized clinical trials. Lancet Diabetes Endocrinol 2018;6(9):691-704. https://doi.org/10.1016/S2213-8587(18)30141-4

14. Cherney DZI, Zinman B, Inzucchi SE et al. Effects of empagliflozin on the urinary albuminto-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPAREG OUTCOME randomized, placebo-controlled trial. Lancet Diabetes Endocrinol 2017;5(8):610-621. https://doi.org/10.1016/S2213-8587(17)30182-1

15. Bae JH, Park E-G, Kim S et al. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with Type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2019;9(1):13009. https://doi.org/10.1038/s41598-019-49525-y

16. Heerspink HJ, Kröpelin TF, Hoekman J, de Zeeuw D. Reducing Albuminuria as Surrogate Endpoint (REASSURE) Consortium. Druginduced reduction in albuminuria is associated with subsequent renoprotection: a metaanalysis. J Am Soc Nephrol 2015;26(8):2055-2064. https://doi.org/10.1681/ASN.2014070688

17. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295-2306. https://doi.org/10.1056/NEJMoa1811744

18. Dekkers CCJ, Gansevoort RT. Sodium-glucose cotransporter 2 inhibitors: extending the indication to non-diabetic kidney disease? Nephrol Dial Transplant 2020;35(Suppl1):i33-i42. https://doi.org/10.1093/ndt/gfz264

19. Davies M, Chatterjee S, Khunti K. The treatment of type 2 diabetes in the presence of renal impairment: what we should know about newer therapies. Clin Pharmacol 2016;8:61-81. https://doi.org/10.2147/CPAA.S82008

20. Inzucchi SE, Bergenstal RM, Buse JB et al. Management of hyperglycaemia in type 2 diabetes, 2015: A patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Di-abetologia 2015;58(3):429-442. https://doi.org/10.1007/s00125-014-3460-0

21. Fioretto P, Zambon A, Rossato M et al. SGLT2 inhibitors and the diabetic kudney. Diabetes Care 2016;39(Suppl 2):S165-S171. https://doi.org/10.2337/dcS15-3006

22. American Diabetes Association. 11. Microvascular complications and foot care: Standarts of Medical Care in Diabetes - 2019. Diabetes Care 2019;42(Suppl 1):S124-S138. https://doi.org/10.2337/dc19-S011

23. Davies MJ, D’Alessio DA, Fradkin J et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018;61(12):2461-2498. https://doi.org/10.1007/s00125-018-4729-5

24. Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence. Postgrad Med 2019;131(4):251-260. https://doi.org/10.1080/00325481.2019.1601404

25. Pessoa TD, Campos LC, Carraro-Lacroix L et al. Functional role of glucose metabolism, osmotic stress, and sodiumglucose cotransporter isoformmediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol 2014;25(9):2028-2039. https://doi.org/10.1681/ASN.2013060588

26. Sha S, Polidori D, Heise T et al. Effect of the sodium glucose cotransporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2014;16 (11):1087-1095. https://doi.org/10.1111/dom.12322

27. Salocinski K, Richards J, All S et al. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am J Physiol Renal Physiol 2015;309 (11):F933-F942. https://doi.org/10.1152/ajprenal.00197.2014

28. Onishi A, Fu Y, Darshi M et al. Effect of renal tubulespecific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol 2019;317(2):F419-F434. https://doi.org/10.1152/ajprenal.00497.2018

29. Шестакова МВ, Сухарева ОЮ. Глифлозины: особенности сахароснижающего действия и негликемические эффекты нового класса препаратов. Клиническая фармакология и терапия 2016;25(2):65-71

30. Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an alternative search. Curr Opin Nephrol Hypertens 2020;29(2):190- 198. https://doi.org/10.1097/MNH.0000000000000584

31. Fu Y, Gerasimova M, Mayoux E et al. SGLT2 inhibitor empagliflozin increases renal NHE3 phosphorilation in diabetic Akita mice: possible implications for the prevention of glomerular hyperfiltration. Diabetes 2014;63(Suppl. 1):A132

32. Packer M. Activation and inhibition of sodiumhydrogen exchanger is a mecha-nism that links the pathophysiology and treatment of diabetes mellitus with that of heart fail-ure. Circulation 2017;136(16):1548-1559. https://doi.org/10.1161/CIRCULATIONAHA.117.030408

33. Layton AT, Vallon V, Edwards A. Predicted consequences of diabetes and SGLT2 inhibition on transport and oxygen consumption along a rat nephron. Am J Renal Physiol 2016;310(12):F1269- F1283. https://doi.org/10.1152/ajprenal.00543.2015

34. Mima A. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. Journal of Diabetes and its Complications 2018;32:720- 725. https://doi.org/10.1016/j.jdiacomp.2018.04.011

35. Hallow KM, Helmlinger G, Greasley PJ et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A different volume regulation hypothesis. Diabetes Obes Metab 2018;20(3):479-487. https://doi.org/10.1111/dom.13126

36. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci 2019;20(3):629. https://doi.org/10.3390/ijms20030629

37. Filippatos TD, Liontos A, Papakitsou I, Elisaf MS. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypothesis. Postgrad Med 2019;131(2):82-88. https://doi.org/10.1080/00325481.2019.1581971

38. Hwang I-C, Cho G-Y, Yoon YE et al. Different effects of SGLT2 inhibitors ac-cording to the presence and types of heart failure in type 2 diabetic patients. Cardiovasc Di-abetol 2020;19(1):69. https://doi.org/10.1186/s12933-020-01042-3

39. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. A state-of-the-Art Review. JACC Basic Transl Sci 2020;5(6):632- 644. https://doi.org/10.1016/j.jacbts.2020.02.004

40. Karg MV, Bosch A, Kannenkeri D et al. SGLT2-inhibition with dapagliflozin reduces tissue sodium content: A randomised controlled trial. Cardiovasc Diabetol 2018;17:5. https://doi.org/10.1186/s12933-017-0654-z

41. Titze J. A different view on sodium balance. Curr Opin Nephrol Hypertens 2015;24:14-20. https://doi.org/10.1097/MNH.0000000000000085

42. Schneider MP, Raff U, Kopp C et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol 2017;28:1867-1876. https://doi.org/10.1681/ASN.2016060662

43. Hirose S, Nakajima S, Iwahashi Y et al. Impact of the 8-week administration of Tofogliflozin for glycemic control and body composition in Japanese patients with type 2 diabetes mellitus. Intern Med 2016;55(22):3239-3245. https://doi.org/10.2169/internalmedicine.55.6367

44. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M et al. Effect of intensive glucose lowering treatment of all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: metaanalysis of randomized controlled trials. BMJ 2011;343:d4169. https://doi.org/10.1136/bmj.d4169

45. Tsimihodimos V, Filippatos TD, Elisaf MS. SGLT2 inhibitors and the kidney: Ef-fects and mechanisms. Diabetes Metab Syndr 2018;12(6):1117-1123. https://doi.org/10.1016/j.dsx.2018.06.003

46. Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes Metab 2019:1-14. https://doi.org/10.1111/dom.13854

47. Premaratne E, Verma S, Ekinci EI et al. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab 2015;41(1):5- 17. https://doi.org/10.1016/j.diabet.2014.10.003

48. Tuttle KR. Back to the future: glomerular hyperfiltration and the diabetic kidney. Diabetes 2017;66(1):14-16. https://doi.org/10.2337/dbi16-0056

49. De Nicola L, Conte G, Minutolo R. Prediabetes as a precursor to diabetic kidney disease. Am J Kidney Dis 2016;67(6):817- 819. https://doi.org/10.1053/j.ajkd.2016.03.411

50. Haase VH. Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 2006;291(2):F271-F281. https://doi.org/10.1152/ajprenal.00071

51. Chang YK, Choi H, Jeong JY et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One 2016;11(7):e0158810. https://doi.org/10.1371/journal.pone.0158810

52. Ghanim H, Hejna JM, Abuashehb S et al. Dapagliflozin supresses plasma hepcidin concentrations. Diabete 2018;67(Suppl. 1):1116-1117. Abstract 1116-p

53. Vallon V, Gerasimova M, Rose MA et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 2014;306(2):F194-F204. https://doi.org/10.1152/ajprenal.00520.2013

54. Gembardt F, Bartaun C, Jarzebska N et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol 2014;307(3):F317-F325. https://doi.org/10.1152/ajprenal.00145.2014

55. Novikov A, Vallon V. SGLT2 inhibition in the diabetic kidney - an update. Curr Opin Nephrol Hypertens 2016;25(1):50-58. https://doi.org/10.1097/MNH.0000000000000187

56. Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020;22(5):734-742. https://doi.org/10.1111/dom.13961

57. Cherney DZ, Perkins BA, Soleymanlou N et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014;129(5):587- 597. https://doi.org/10.1161/CIRCULATIONAHA.113.005081

58. Skrtic M, Yang GK, Perkins BA et al. Characterisation of glomerular hemodynamic responses of SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 2014;57(12):2599-2602. https://doi.org/10.1007/s99125-014-3396-4

59. Heerspink HJ, Perkins BA, Fitchett DH et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016;134(10):752-772. https://doi.org/10.1161/CIRCULATIONAHA.116.021887

60. Kidokoro K, Cherney DZI, Bozovic A et al. Evaluation of glomerular hemody-namic function by empagliflozin in diabetic mice using in vivo imaging. Circulation 2019;140(4):303-315. https://doi.org/10.1161/CIRCULATIONAHA.118.037418

61. Perkovic V, Jardine M, Vijapurkar U, Meininger G. Renal effects of canagliflozin in type 2 diabetes mellitus. Curr Med Res Opin 2015;31(12):2219-2231. https://doi.org/10.1185/03007995.2015.1092128

62. Terami N, Ogawa D, Tachibana H et al. Long-term treatment with sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/ db mice. PLoS One 2014;9(6):e100777. https://doi.org/10.1371/journal.pone.0100777

63. Darshi M, Onishi A, Kim JJ et al. Metabolic reprogramming in diabetic kidney disease can be restored via SGLT2 inhibition [abstract]. J Am Soc Nephrol 2017;28:439

64. Mulder S, Heerspink HJL, Darshi M et al. Effect of dapagliflozin on urinary metabolism in people with type 2 diabetes. Diabetes Obes Metab 2019;21(11):2422-2428. https://doi.org/10.1111/dom.13823

65. Yang D, Livingston MJ, Liu Z et al. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018;75:669-688. https://doi.org/10.1007/s00018-017-2639-1

66. Liu WJ, Shen TT, Chen RH et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem 2015;290(33):20499-20510. https://doi.org/10.1074/jbc.M115.666354

67. Chang C, Su H, Zhang D et al. AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 2015;60(6):930-940. https://doi.org/10.1016/j.molcel.2015.10.037

68. Кувачева НВ, Моргун АВ, Хилажева ЕД и др. Формирование инфламмасом: новые механизмы регуляции межклеточных взаимодействий и секреторной активности клеток. Сибирское медицинское обозрение 2013;83(5):3-10

69. Bae HR, Kim DH, Park MH et al. beta-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget 2016;7(41):66444-66454. https://doi.org/10.18632/oncotarget.12119

70. Vallon V, Rose M, Gerasimova M et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or in-jury in diabetes mellitus. Am J Physiol Renal Physiol 2013;304(2):F156-F167. https://doi.org/10.1152/ajprenal.00409.2012

71. Inoue MK, Matsunaga Y, Nakatsu Y et al. Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetol Metab Syndr 2019;11:57. https://doi.org/10.1186/s13098-019-0454-6

72. Hawley SA, Ford RJ, Smith BK et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 2016;65(9):2784-2794. https://doi.org/10.2337/db16-0058

73. Ye Y, Bajaj M, Yang H-C et al. SGLT2-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with sax-agliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther 2017;31(2):119-132. https://doi.org/10.1007/s10557-017-6725-2

74. Mancini SJ, Boyd D, Katwan OJ et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinasedependent and independent mechanisms. Sci Rep 2018;8(1):5276. https://doi.org/10.1038/s41598-018-23420-4

75. Byrne NJ, Matsumura N, Maayah ZH et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail 2020;13(1):e006277. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277

76. Youm YH, Nguyen KY, Grant RW et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome mediated inflammatory disease. Nat Med 2015;21:263-269. https://doi.org/10.1038/nm.3804

77. Zhang Y, Thai K, Kepecs DM, Gilbert RE. Sodium-glucose linked cotransporter 2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS One 2016;11(1):e0144640. https://doi.org/10.1371/journal.pone.0144640

78. Ma Q, Steiger S, Anders HJ. Sodium glucose transporter 2 inhibition has no renoprotective effects on non-diabetic chronic kidney disease. Physiol Rep 2017;5(7):e13228. https://doi.org/10.14814/phy2.13228

79. Cassis P, Locatelli M, Cerullo D et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 2018;3(15):98720. https://doi.org/10.1172/jci.insight.98720

80. Zhang Y, Nakano D, Guan Y et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor dependent pathway after renal injury in mice. Kidney Int 2018;94(3):524-535. https://doi.org/10.1016/j.kint.2018.05.002

81. Jaikumkao K, Pongchaidecha A, Chueakula N et al. Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, shows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018;20(11):2617-2626. https://doi.org/10.1111/dom.13441


Для цитирования:


Зверев Я.Ф., Рыкунова А.Я. Нефропротективное действие новых сахароснижающих препаратов: глифлозины. Нефрология. 2021;25(4):11-22. https://doi.org/10.36485/1561-6274-2021-25-4-11-22

For citation:


Zverev Ya.F., Rykunova A.Ya. Nephroprotective effect of novel oral sugar-reducing medicines: glyflosins. Nephrology (Saint-Petersburg). 2021;25(4):11-22. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-4-11-22

Просмотров: 109


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)