Sodium and glucose cotransporter type 2 inhibitors: a new class of drugs for the treatment of diabetic and non-diabetic nephropathy
https://doi.org/10.36485/1561-6274-2021-25-4-33-41
Abstract
Inhibitors of renal sodium-glucose cotransporter type 2 (SGLT2) are a new class of antidiabetic drugs that have recently been introduced into clinical practice for the treatment of patients with type 2 diabetes mellitus. According to CREDENCE study, the inclusion of canagliflozin in drug therapy for patients with type 2 diabetes mellitus not only provides adequate control of blood glucose but also has a pronounced nephroprotective effect, which manifests in a significant reduction in the risk of progression of renal dysfunction in patients with stages 2, 3a and 3b CKD. The identification of nephroprotective effects in SGLT2 inhibitors, which is not related to their antihyperglycemic effect, suggests the possibility of using drugs of this class for drug therapy of patients with CKD of non-diabetic etiology. The review presents the data of clinical studies devoted to elucidating the participation of diuretic action and the associated decrease in blood pressure and venous stasis in the kidneys, improving glomerular hemodynamics and inhibiting the activity of intrarenal RAS in the mechanism of nephroprotective action of these drugs. Large-scale DAPA-CKD and EMPA-KIDNEY studies are currently underway, the results of which will provide information on the clinical efficacy and safety of dapagliflozin and empagliflozin in non-diabetic patients with the impaired renal function of varying severity, including those with stage 4 CKD. Initial data obtained in the DAPA-CKD trial indicated that dapagliflozin, when added to nephroprotective therapy, significantly improves renal outcomes not only in patients with type 2 diabetes but also in patients with CKD of non-diabetic origin, including those with glomerulonephritis, hypertensive nephropathy, and other kidney damage.
About the Authors
O. B. KuzminRussian Federation
Prof. Oleg B. Kuzmin, MD, PhD, DMedSci , Department of Pharmacology
460000, Russia, Orenburg, Park. av., 7
Phone: (8)9198487679
V. V. Belyanin
Russian Federation
Vitaliy V. Belyanin, PhD, Department of Pharmacology
460000, Russia, Orenburg, Park. av., 7
Phone: (8)9128442604
N. V. Buchneva
Russian Federation
Nataliya V. Buchneva, PhD, Department of Pharmacology
460000, Russia, Orenburg, Park. av., 7
Phone: (8)9878703415
K. N. Landar
Russian Federation
Larisa N. Landar, PhD, Department of Pharmacology
460000, Russia, Orenburg, Park. av., 7
Phone: (8) 9150385128
S. V. Serdyuk
Russian Federation
Svetlana V. Serdyuk, PhD, Department of Pharmacology
460000, Russia, Orenburg, Park. av., 7
Phone: (8)9325438459
References
1. Davies MJ, D’Allessio DA, Fradkin J et al. Management of in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61(12):2461–2498. doi: 10.1007/s00125-018-4729-5
2. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015;75(1):33–59. doi: 10.1007/s40265-014-0337-y
3. Eickhoff MK, Dekkers CCJ, Kramers BJ et al. Effect of dapagliflozin on volume status when added to renin-angiotensin system inhibitors. J Clin Med 2019;8(6):pii:E779. doi: 10.3390/jcm8060779
4. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect sodiumglucose co-transporter type 2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22528 patients. J Am Heart Assoc 2017;6 (6):pii:e004007. doi: 10.1161/JAHA.116.004007
5. Bae JH, Park EG, Kim S et al. Effects of sodium-glucose cotransporter type 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci Rep 2019;9(1):13009. doi: 10.1038/s41598-019-49525-y
6. Neuen BL, Yuong T, Heerspink HJL et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019;7(1):845–854. doi: 10.1016/S2213-8587(19)30256-6
7. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720
8. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375(18):323–334. doi: 10.1056/NEJMoa1515920
9. Cherney D, Lund SS, Perkins BA et al. The effect of sodium-glucose cotransporter type 2 inhibition with empagliflozin on microalbuminuria and microalbuminuria in patients with type 2 diabetes. Diabetologia 2016;59(9):1860–1870. doi: 10.1007/s00125-016-4008-2
10. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377(7):644–657. doi: 10.1056/NEJMoa1611925
11. Perkovic V, de Zeeuw D, Mahaffey KW et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS program randomized clinical trials. Lancet Diabetes Endocrinol 2018;6(9): 691–704. doi: 10.1016/S2213-8587(18)30141-7
12. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380(4):347–357. doi: 10.1056/NEJMoa1812389
13. Mosenzon O, Wiviott SD, Cahn A et al. Effect of dapagliflozin on the development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomized trial. Lancet Diabetes Endocrinol 2019;7(8):606– 617. doi: 10.1016/S2213-8587(19)-30180-9
14. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380(24):2295–2306. doi: 10.1056/NEJMoa1811744
15. Weir MR, McCullough PA, Buse JB, Anderson J. Renal and cardiovascular effects of sodium-glucose co-transporter type 2 inhibitors in patients with type 2 diabetes and chronic kidney disease: perspectives on the canagliflozin and renal events in diabetes with established nephropathy clinical evaluation trial results. Am J Nephrol 2020;51(4):276–288. doi: 10.1159/000506533
16. Pollock C, Stefansson B, Reyner D et al. Albuminurialowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2019;7(6):429–441. doi: 10.1016/ S2213-8587(19)-30086-5
17. Baker WL, Smyth LR, Riche DM et al. Effects of sodiumglucose cotransporter type 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens 2014;8(4):262–275. doi: 10.1016/j.jash.2014.01.007
18. Baker WL, Buckley LF, Kelly MS et al. Effects of sodiumglucose cotransporter type 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2017;6(5):pii: e005686. doi: 10.1161/JAHA.117.005686 K
19. im S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens Res 2019;42(12):1905–1915. doi: 10.1038/s41440-019-0326-3
20. Kuzmin OB, Buchneva NV, Pugaeva MO. Renal hemodynamic mechanisms development of the hypertensive nephropathy. Nephrology (Saint-Petersburg) 2009;13(4):28–36. (In Russ.) doi: 10.24844/1561-6274-2009-13-4-28-36
21. Jordan J, Tank J, Heusser K et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type 2 diabetes mellitus. J Am Soc Hypertens 2017;11(9):604–612. doiI: 10.1016/j.jash.2017.07.005
22. Shigiyama F, Kumashiro N, Miyagi M et al. Effectiveness of dapagliflozin on vascular endothelial function and glycaemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol 2017;16(1):84. doi: 10.1186/s12933-017-0564-0
23. Ramirez AJ, Sanchez MJ, Sanchez RA. Diabetic patients with essential hypertension treated with amiloride: blood pressure and arterial stiffness effects of canagliflozin or perindopril. J Hypertens 2019;37(3):636–642. doi: 10.1097/HJH.0000000000001907
24. Kario K, Okada K, Kato M et al. 24-hour blood pressurelowering effect of an SGLT2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA study. Circulation 2019;139(18):2089– 2097. doi: 10.1161/CIRCULATIONAHA.118.037076
25. Cherney DZI, Cooper ME, Tikkanen I et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbAIc reduction with empagliflozin. Kidney Int 2018;93(1):231–244. doi: 10.1016/j.kint.2017.06.017
26. Kobayashi K, Toyoda M, Kaneyama N et al. Relation between blood pressure management and renal effects of sodium-glucose cotransporter 2 inhibitors in diabetic patients with chronic kidney disease. J Diabetes Res 2019;9415313. doi: 10.1155/2019/9415313
27. Koriyama S. A potential mechanism of cardiorenal protection with sodium-glucose cotransporter 2 inhibitors: amelioration of renal congestion. Kidney Blood Press Res 2019;44(4):449–456. doi: 10.1159/000501081
28. Afsar B, Ortiz A, Covic A et al. Focus on renal congestion in heart failure. Clin Kidney J 2016;9(1):39–47. doi: 10.1093/ckj/sfv124
29. Cops J, Mullens W, Verbrugge FH et al. Selective abdominal venous congestion to investigate cardiorenal interactions in a rat model. PloS One 2018;13(5):e0197687
30. Cops J, Mullens W, Verbrugge FH et al. Selective abdominal venous congestion inducers adverse renal and hepatic morphological and functional alterations despite a preserved cardiac function. Sci Rep 2018;8(1):17757. doi: 10.1038/s41598-018-36189-3
31. Schork A, Saynisch J, Vosseler A et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensinaldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol 2019;18(1):46. doi: 10.1186/s12933-019-0852-y
32. Cheney DZ, Perkins BA, Soleymanlou N et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014;129(5):587– 597. doi: 10.1161/CIRCULATIONAHA.113.005081
33. Fioretto P, Zambon A, Rossato M et al. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016;39 Suppl 2: S165–S171. doi: 10.2337/dcS15-3006
34. Cassis P, Locatelli V, Cerullo D et al. SGLT2 inhibitor dapagliflozin limits podocytes damage in proteinuric nondiabetic nephropathy. JCI Insight 2018;3(15):pii:98720. doi: 10.1172/jci.insight.98720
35. Rahman A, Fujisawa Y, Nakano D et al. Effect of selective SGLT2 inhibitor luseogliflozin on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin Exp Pharmacol Physiol 2017;44 (4):522–525. doi: 10.1111/1440-1681.12725
36. Matthews VB, Elliot RH, Rudnicka C et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens 2017;35(10): 2059–2068. doi: 10.1097/HJH.0000000000001434
37. Wan N, Fujisawa Y, Kobara H et al. Effect of an selective SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in nondiabetic model of chronic kidney disease. Hypertens Res 2020;43(6):492–499. doi: 10.1038/s41440-020-0410-8
38. Bautista R, Manning R, Martinez F et al. Angiotensin-II dependent increased expression of Na+ glucose cotransporter in hypertension. Am J Physiol Renal Physiol 2004;286(1):F127–F133. doi: 10.1152/ajprenal.00113.2003
39. Reyes-Pardo H, Bautista R et al. Role of sodium/glucose cotransporter inhibition on a rat model of angiotensin II-dependent kidney damage. BMC Nephrol 2019;20(21):292. doi: 10.1186/s12882-019-1490-z
40. Yoshimoto T, Furuki T, Kobori H et al. Effects of sodiumglucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes. J Investig Med 2017;65(7):1057–1061. doi: 10.1136/jim-2017-000445
41. Woods TC, Satou R, Miyata K et al. Canagliflozin prevents angiotensinogen augmentation and mitigates kidney injury in mouse model of type 2 diabetes mellitus. Am J Nephrol 2019;49(4):331–342. doi: 10.1159/000499597
42. Satou R, Cypress MW, Woods TC et al. Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells. Am J Physiol Renal Physiol 2020;318(1):F67–F75. doi: 10.1152/ajprenal.00402.2019
43. Castoldi G, Carletti R, Ippolito S et al. Renal antifibrotic effect of sodium-glucose cotransporter 2 inhibition in angiotensin II-dependent hypertension. Am J Nephrol 2020;51(2):119–129. doi: 10.1159/000505144
44. Heerspink HJl, Stefansson BV, Chertow GM et al. Rationale and protocol of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant 2020;35(2):274–282. doi: 10.1093/ndt/gfz290
45. Wheeler DC, Stefansson BV, Jongs N et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and nob-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021;9(1):22–31. doi: 10.1016/S2213-8587(20)30369-7
46. Herrington WG, Preiss D, Haynes R et al. The potential for improving cardio-renal outcomes by sodium-glucose cotransporter 2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J 2018;11(6):749–761. doi: 10.1093/ckj/sfy090
Review
For citations:
Kuzmin O.B., Belyanin V.V., Buchneva N.V., Landar K.N., Serdyuk S.V. Sodium and glucose cotransporter type 2 inhibitors: a new class of drugs for the treatment of diabetic and non-diabetic nephropathy. Nephrology (Saint-Petersburg). 2021;25(4):33-41. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-4-33-41