Molecular mechanisms of complications development of nephrolithiasis associated with diabetes type 2
https://doi.org/10.36485/1561-6274-2021-25-4-57-63
Abstract
BACKGROUND. Until recently there is no understanding of the clinical features and the reasons for the progression of complications of diabetes-associated nephrolithiasis (NLT) which limits the development of effective treatment for patients with this kidney pathology.
THE AIM was to investigate the molecular mechanisms of hematuria and leukocyturia in the comorbidity of nephrolithiasis with type 2 diabetes.
PATIENTS AND METHODS. The study analyzed the clinical, instrumental, and laboratory data of 196 patients with NLT; the study included 48 (24.5 %) patients with comorbidity of NLT with type 2 diabetes. All patients at the stage of hospitalization underwent a comprehensive clinical and laboratory examination according to the traditional scheme adopted for the diagnosis of NLT. ATP, PAF, and collagen (Sigma) agonists at EC50 concentrations causing aggregation at the 50 % level in healthy individuals were used to analyze the functional activity of platelet (PLT) receptors. PLT aggregation was assessed by the turbidimetric method using a ChronoLog analyzer (USA).
RESULTS. Microhematuria occurred in 27 (56.2 %) patients and gross hematuria in 21 (43.8 %) patients out of 48 patients with type 2 diabetes-associated NLT. Microscopy of urine in patients with comorbidity of NLT revealed a greater number of erythrocytes (P = 0.014); gross hematuria (P = 0.034) and leukocyturia (р=0,003) were more common in this cohort of patients. NLT complications occurred against the background of increased reactivity of P2X receptors, PAF receptor, and GPVI receptor (p <0.001) of PLT compared with that in patients with NLT without DM. The progression of leukocyturia was accompanied by increased severity of hematuria and was manifested by increased activity of GPVI receptors (p <0.001).
CONCLUSION. The influence of diabetes on the pathogenesis of NLT complications is associated with increased ischemia of kidney tissue, systemic inflammatory response, and vascular wall remodeling. The activity of P2X, PAF, and GPVI platelet receptors could be considered as a system of potential biomarkers and prognostic factors of complications in the comorbidity of NLT with type 2 diabetes.
About the Authors
E. F. BarinovUkraine
Prof. Еduard F. Barinov MD, PhD, DMedSci
83003, Donetsk, Ukraine, M.Gorky Donetsk National Medical University
Phone: (+38)0500690470
Kh. V. Grigoryan
Ukraine
Khachen V. Grigoryan, MD, PhD
83003, Donetsk, Ukraine, M. Gorky Donetsk National Medical University
Phone: (+38 ) 050 208 0622
Y. Yu. Malinin
Ukraine
Yuri Yu. Malinin MD, PhD
83003, Donetsk, Ukraine, M. Gorky Donetsk National Medical University
Phone: (+38 ) 050 764 4183
References
1. Kim S, Chang Y, Jung H. et al. Glycemic Status, Insulin Resistance, and the Risk of Nephrolithiasis: A Cohort Study. Аm J Kidney Dis 2020 ;76(5):658–668.e1. doi: 10.1053/j.ajkd.2020.03.013
2. Prezioso D, Strazzullo P, Lotti T. et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl 2015;87(2):105–120. doi: 10.4081/aiua.2015.2.105
3. Olcucu MT, Teke K, Yalcin S. Characterizing the Association Between Toll-like Receptor Subtypes and Nephrolithiasis With Renal Inflammation in an Animal Model. Urology 2018;111:238. e1-238.e5. doi: 10.1016/j.urology.2017.09.026
4. Mefford JM, Tungate RM, Amini L et al. Comparison of Urolithiasis in the Presence and Absence of Microscopic Hematuria in the Emergency Department. West J Emerg Med 2017;18(4):775– 779. doi: 10.5811/westjem.2017.4.33018
5. Lumlertgul N, Siribamrungwong M, Jaber B et al. Secondary Oxalate Nephropathy: A Systematic Review. Kidney Int Rep 2018;3(6):1363–1372. doi: 10.1016/j.ekir.2018.07.020
6. Lin B-B, Huang R-H, Lin B-L et al. Associations between nephrolithiasis and diabetes mellitus, hypertension and gallstones: A meta-analysis of cohort studies. Nephrology (Carlton) 2020;25(9):691–699. doi: 10.1111/nep.13740
7. Akash MSH, Rehman K, Fiayyaz F et al. Diabetes-associated infections: development of antimicrobial resistance and possible treatment strategies. Arch Microbiol 2020;202(5):953–965. doi: 10.1007/s00203-020-01818-x
8. Kim S, Chang Y, Jung H-S et al. Glycemic Status, Insulin Resistance, and the Risk of Nephrolithiasis: A Cohort Study. Am J Kidney Dis 2020;76(5):658–668.e1. doi: 10.1053/j.ajkd.2020.03.013
9. Carbone A, Salhi YA, Tasca A et al. Obesity and kidney stone disease: a systematic review. Minerva Urol Nefrol 2018;70(4):393– 400. doi: 10.23736/S0393-2249.18.03113-2
10. Wang H-F, Yu Q-Q, Zheng R-F et al. Inhibition of vascular adventitial remodeling by netrin-1 in diabetic rats. J Endocrinol 2020;244(3):445–458. doi: 10.1530/JOE-19-0258
11. Binet F, Cagnone G, Crespo-Garcia S et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science 2020;369(6506):eaay5356. doi: 10.1126/science.aay5356
12. Correa-Costa M, Andrade-Oliveira V, Braga TT et al. Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis. Lab Invest 2014;94(4):455–466. doi: 10.1038/labinvest.2013.155
13. Dwyer KM, Kishore BK, Robson S. Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020;16(9):509–524. doi: 10.1038/s41581-020-0304-7
14. Harrison P, Mackie I, Mumford A. British Guidelines for the laboratory investigation of heritable disorders of platelet function. Brit Journal of Haematology 2011;155(1):30–44
15. Buch A, Kaur S, Nair R et al. Platelet Volume Indices as Predictive Biomarkers for Diabetic Complications in Type 2 Diabetic Patients. J Lab Physicians 2017;9(2):84–88. doi: 10.4103/0974-2727.199625
16. Arthur JF, Jandeleit-Dahm K, Andrews RK. Platelet Hyperreactivity in Diabetes: Focus on GPVI Signaling-Are Useful Drugs Already Available? Diabetes 2017;66(1):7–13. doi: 10.2337/db16-1098
17. Tokarz A, Szuścik I, Kuśnierz-Cabala B et al. Extracellular Vesicles Participate in the Transport of Cytokines and Angiogenic Factors in Diabetic Patients With Ocular Complications. Folia Med Cracov 2015;55(4):35–48
18. Shilpi K, Potekar RM. A Study of Platelet Indices in Type 2 Diabetes Mellitus Patients. Indian J Hematol Blood Transfus 2018;34(1):115–120. doi: 10.1007/s12288-017-0825-9
19. Pereira ADS, de Oliveira LS, Lopes TF et al. Effect of gallic acid on purinergic signaling in lymphocytes, platelets, and serum of diabetic rats. Biomed Pharmacother 2018;101:30–36. doi: 10.1016/j.biopha.2018.02.029
20. Hu L, Chang L, Zhang Y et al. Platelets Express Activated P2Y12 Receptor in Patients With Diabetes Mellitus. Circulation 2017;136(9):817–833. doi: 10.1161/CIRCULATIONAHA.116.026995
21. Schiattarella GG, Carrizzo A, Ilardi F et. al. Rac1 Modulates Endothelial Function and Platelet Aggregation in Diabetes Mellitus. J Am Heart Assoc 2018;7(8);pii:e007322. doi: 10.1161/JAHA.117.007322
22. Wang B, Yee Aw T, Stokes KY. N-acetylcysteine attenuates systemic platelet activation and cerebral vessel thrombosis indiabetes. Redox Biol 2018;14:218–228. doi: 10.1016/j.redox.2017.09.005
23. Gong D-J, Wang L, Yan Y-Y et al. Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis. Ren Fail 2019;41(1):750–761. doi: 10.1080/0886022X.2019.1643737
24. Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017;120(1):207–228. doi: 10.1161/CIRCRESAHA.116.309726
25. Wang W, Hu D, Feng Y et al. Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol 2020;18(1):182. doi: 10.1186/s12915-020-00918-w
26. Baudel MM-A, Espinosa-Tanguma R, Nieves-Cintron M et al. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020;11:329. doi: 10.3389/fendo.2020.00329
27. Quiroga J, Alarcón P, Manosalva C et.al. Mitochondria-derived ATP participates in the formation of neutrophil extracellular traps induced by platelet-activating factor through purinergic signaling in cows. Dev Comp Immunol 2020;113:103768. doi: 10.1016/j.dci.2020.103768
28. Finsterbusch M, Schrottmaier WC, Kral-Pointner J et al. Measuring and interpreting platelet-leukocyte aggregates. Platelets 2018;29(7):677–685. doi: 10.1080/09537104.2018.1430358
29. Lordan R, Tsoupras A, Zabetakis I et al. Forty Years Since the Structural Elucidation of Platelet-Activating Factor (PAF): Historical, Current, and Future Research Perspectives Molecules 2019;24(23):4414. doi: 10.3390/molecules24234414
30. Darestani SG, Kurano M, Shinnakasu A et al. Association between changes in the mRNA expression of platelet-activating factor receptor in peripheral blood mononuclear cells and progression of diabetic nephropathy. Diabetol Int 2019;11(1):11–18. doi: 10.1007/s13340-019-00394-w31.
31. Kurano M, Darestani SG, Shinnakasu A et al. mRNA expression of platelet activating factor receptor (PAFR) in peripheral blood mononuclear cells is associated with albuminuria and vascular dysfunction in patients with type 2 diabetes. Diabetes Res Clin Pract 2018;136:124–133. doi: 10.1016/j.diabres.2017.11.028
32. Zhou S-X, Huo D-M, He X-Y et al. High glucose/lysophosphatidylcholine levels stimulate extracellular matrix deposition in diabetic nephropathy via platelet-activating factor receptor. Mol Med Rep 2018;17(2):2366–2372. doi: 10.3892/mmr.2017.8102
33. Pennings GJ, Yong AS, Wong C et al. Circulating levels of soluble EMMPRIN (CD147) correlate with levels of soluble glycoprotein VI in human plasma. Platelets 2014;25(8):639–642. doi: 10.3109/09537104.2013.852660
34. Tsuda K. Angiotensin 1-7 and the Sympathetic Nervous System in Hypertensive Kidney Disease. Am J Hypertens 2019;32(10):e3. doi: 10.1093/ajh/hpz114
35. Motegi S-I, Sekiguchi A, Fujiwara Ch et al. Possible association of elevated serum collagen type IV level with skin sclerosis in systemic sclerosis. J Dermatol 2017;44(2):167–172. doi: 10.1111/1346-8138.13564
36. Xie Y, Wang Y, Ding H et al. Highly glycosylated CD147 promotes hemorrhagic transformation after rt-PA treatment in diabetes: a novel therapeutic target. J Neuroinflammation 2019;16(1):72. doi: 10.1186/s12974-019-1460-1
37. Kostov K, Blazhev A. Use of Glycated Hemoglobin (A1c) as a Biomarker for Vascular Risk in Type 2 Diabetes: Its Relationship with Matrix Metalloproteinases-2, -9 and the Metabolism of Collagen IV and Elastin. Medicina (Kaunas) 2020;56(5):E231. doi: 10.3390/medicina56050231
Review
For citations:
Barinov E.F., Grigoryan Kh.V., Malinin Y.Yu. Molecular mechanisms of complications development of nephrolithiasis associated with diabetes type 2. Nephrology (Saint-Petersburg). 2021;25(4):57-63. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-4-57-63