Preview

Nephrology (Saint-Petersburg)

Advanced search

Extracorporal hemocorrection methods for COVID-19: are there outlooks?

https://doi.org/10.36485/1561-6274-2021-25-4-95-106

Abstract

Viral epidemics of various scales have ceased to be something extraordinary. However, it is unlikely that the COVID-19 epidemic can be compared to any other, except the Spanish flu epidemic of 1918-1919. The review discusses the pathogenesis of the "cytokine storm" and possible extracorporeal methods of its correction. Following the "Third International Consensus on the definition of sepsis and septic shock (Sepsis-3)", sepsis is recommended to be understood as "life-threatening acute organ dysfunction resulting from a violation of the regulation of the response of the macroorganism to infection". Severe COVID-19 is practically a variant of viral sepsis. However, the disease is not coded as sepsis and is not treated as sepsis. Great hopes are pinned on vaccination, which, presumably, should significantly reduce the likelihood of adverse outcomes. However, while the epidemiological situation is far from ideal, there are no "golden" standards of drug therapy. Therefore, do not forget about direct methods of removing proinflammatory cytokines. Among them, hemofiltration, combined hemocorrection, plasma exchange, combined plasma filtration, and adsorption are discussed. We were not able to identify the ideal method. This is probably due to the difficulties of performing randomized clinical trials among patients with severe COVID-19. The reasons are also discussed in the review.

About the Authors

A. Sh. Rumyantsev
Saint Petersburg State University; First Saint Petersburg State Medical University named after Academician I.P. Pavlov
Russian Federation

Prof. Rumyantsev Aleksandr Shalikovich, MD, PhD, DMedSci, department of faculty therapy; Department of Propaedeutics of Internal Medicine

199106, St. Petersburg, 21st line V.O., 8a, phone:+7 (812)326-03-26

197022, Saint Petersburg, L'va Tolstogo str. 6-8, phone: +7 (911) 2677413

 



M. Kh. Khasun
First Saint Petersburg State Medical University named after Academician I.P. Pavlov
Russian Federation

Associate Prof. Khasun Mohamad, MD, PhD, Department of Propudeutics of Internal Diseases

197022, St-Petersburg, L. Tolstoy st., 17, build. 54 

Phone: (812)346-39-26



I. Yu. Panina
First Saint Petersburg State Medical University named after Academician I.P. Pavlov
Russian Federation

Prof. Irina Yu. Panina, MD, PhD, DMedSci, Department of Propaedeutics of Internal Medicine

197022, Saint Petersburg, L'va Tolstogo str. 6-8

Phone: (812) 906-97-53



N. Yu. Korosteleva
First Saint Petersburg State Medical University named after Academician I.P. Pavlov
Russian Federation

Natalya Yu. Korosteleva, MD, PhD, Research Institute of Nephrology, senior researcher

197022, Saint Petersburg, L'va Tolstogo str. 6-8

Phone: +7 (911) 9184549



V. A. Shurakova
First Saint Petersburg State Medical University named after Academician I.P. Pavlov
Russian Federation

Vera A. Shurakova, MD, Department of Propaedeutics of Internal Medicine

197022, Saint Petersburg, L'va Tolstogo, str. 6-8

Phone: (812) 906-97-53



G. A. Zemchenkov
BBraun Avitum Russland Clinics
Russian Federation

Gennadiy A. Zemchenkov, MD

Phone: +7(812) 334-76-30



References

1. Osler W. The study of the fevers of the South. JAMA 1896; XXVI (21):999–1004. doi:10.1001/jama.1896.02430730001001

2. Frost WH Statistics of influenza morbidity. Public Health Rep 1920;35:584–597 10.2307/4575511

3. Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 2006 Jan;12(1):15–22. doi: 10.3201/eid1201.050979

4. Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K, editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007

5. James C, Harfouche M, Welton NJ, Turner KM, Abu-Raddad LJ, Gottlieb SL, Looker KJ. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ 2020 May 1;98(5):315–329. doi: 10.2471/BLT.19.237149

6. WHO. Global hepatitis report, 2017. https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en

7. WHO. Hepatitis C fact sheet. 2017; http://www.who.int/news-room/fact-sheets/detail/hepatitis-c

8. https://www.worldometers.info/coronavirus

9. Черкасский БЛ. Инфекционные и паразитарные болезни человека. Справочн. эпидемиолога. Медицинская газета, М., 1994: 617

10. Шандала М.Г. Актуальные проблемы сочетанного применения прививочных и неиммунологических методов борьбы с инфекциями. Вестник Российской академии медицинских наук 2012;67(10):49–54

11. https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html

12. Jiang S, Hillyer C, Du L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol 2020 May;41(5):355–359. doi: 10.1016/j.it.2020.03.007

13. Wang P, Nair MS, Liu L et al. Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to Antibody Neutralization. bioRxiv [Preprint]. 2021 Jan 26:2021.01.25.428137. doi: 10.1101/2021.01.25.428137

14. Wang Y, Zhang L, Sang L et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest 2020 Oct 1;130(10):5235–5244. doi: 10.1172/JCI138759

15. Weinreich DM, Sivapalasingam S, Norton T et al. REGNCOV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med 2021 Jan 21;384(3):238–251. doi: 10.1056/NEJMoa2035002

16. Giuseppe Gritti, Federico Raimondi, Diego Ripamonti et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv 2020.04.01.20048561; doi: https://doi.org/10.1101/2020.04.01.20048561

17. Gupta S, Wang W, Hayek SS et al. Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19. JAMA Intern Med 2021 Jan 1;181(1):41– 51. doi: 10.1001/jamainternmed.2020.6252

18. Hermine O, Mariette X, Tharaux PL STOP-COVID Investigators. Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 2021 Jan 1;181(1):32–40. doi: 10.1001/jamainternmed.2020.6820

19. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 Feb 15;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5

20. Lier AJ, Tuan JJ, Davis MW et al. Case Report: Disseminated Strongyloidiasis in a Patient with COVID-19. Am J Trop Med Hyg 2020 Oct;103(4):1590–1592. doi: 10.4269/ajtmh.20-0699

21. REMAP-CAP Investigators, Gordon AC, Mouncey PR et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med 2021 Apr 22;384(16):1491–1502. doi: 10.1056/NEJMoa2100433

22. Salama C, Han J, Yau L et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med 2021 Jan 7;384(1):20–30. doi: 10.1056/NEJMoa2030340

23. Lescure FX, Honda H, Fowler RA et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med 2021 May;9(5):522–532. doi: 10.1016/S2213-2600(21)00099-0

24. Stone JH, Frigault MJ, Serling-Boyd NJ et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med 2020 Dec 10;383(24):2333–2344. doi: 10.1056/NEJMoa2028836

25. Agarwal A, Mukherjee A, Kumar G et al. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial) BMJ 2020; 371 :m3939 doi:10.1136/bmj.m3939

26. AlQahtani M, Abdulkarim A, Almadani A et al. Randomized controlled trial of convalescent plasma therapy against standard therapy in patients with severe COVID-19 disease. medRxiv 2020.11.02.20224303; doi: https://doi.org/10.1101/2020.11.02.20224303

27. Avendano-Sola C, Ramos-Martinez A, Muñez-Rubio E et al. Convalescent plasma for COVID-19: a multicenter, randomized clinical trial. Convalescent Plasma for COVID-19: A multicenter, randomized clinical trial. medRxiv 2020.08.26.20182444; doi: https://doi.org/10.1101/2020.08.26.20182444

28. Choi B, Choudhary MC, Regan J et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N Engl J Med 2020 Dec 3;383(23):2291–2293. doi: 10.1056/NEJMc2031364

29. Clark E, Guilpain P, Filip IL et al. Convalescent plasma for persisting COVID-19 following therapeutic lymphocyte depletion: a report of rapid recovery. Br J Haematol 2020 Aug;190(3):e154– e156. doi: 10.1111/bjh.16981

30. Fung M, Nambiar A, Pandey S et al. Treatment of immunocompromised COVID-19 patients with convalescent plasma. Transpl Infect Dis 2021 Apr;23(2):e13477. doi: 10.1111/tid.13477

31. Gharbharan A, Jordans CCE, Geurtsvankessel C et al. Convalescent Plasma for COVID-19. A randomized clinical trial. medRxiv 2020.07.01.20139857; doi: https://doi.org/10.1101/2020.07.01.20139857

32. Hueso T, Pouderoux C, Pere H et al. Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19. Blood 2020 Nov 12;136(20):2290–2295. doi: 10.1182/blood.2020008423

33. Iaboni A, Wong N, Betschel SD A Patient with X-Linked Agammaglobulinemia and COVID-19 Infection Treated with Remdesivir and Convalescent Plasma. J Clin Immunol 2021 Feb 6:1–3. doi: 10.1007/s10875-021-00983-y. Epub ahead of print

34. Joyner MJ, Carter RE, Senefeld JW et al. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19. N Engl J Med 2021 Mar 18;384(11):1015–1027. doi: 10.1056/NEJMoa2031893

35. Kemp SA, Collier DA, Datir RP et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021 Apr;592(7853):277–282. doi: 10.1038/s41586-021-03291-y

36. Li L, Zhang W, Hu Y et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020 Aug 4;324(5):460–470. doi: 10.1001/jama.2020.10044

37. Libster R, Pérez Marc G, Wappner D et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med 2021 Feb 18;384(7):610–618. doi: 10.1056/NEJMoa2033700

38. Mira E, Yarce OA, Ortega C et al. Rapid recovery of a SARS-CoV-2-infected X-linked agammaglobulinemia patient after infusion of COVID-19 convalescent plasma. J Allergy Clin Immunol Pract 2020 Sep;8(8):2793–2795. doi: 10.1016/j.jaip.2020.06.046

39. Nguyen FT, van den Akker T, Lally K et al. Transfusion reactions associated with COVID-19 convalescent plasma therapy for SARS-CoV-2. Transfusion 2021 Jan;61(1):78–93. doi: 10.1111/trf.16177

40. O'Donnell MR, Grinsztejn B, Cummings MJ, et al. A randomized, double-blind, controlled trial of convalescent plasma in adults with severe COVID-19. medRxiv 2021.03.12.21253373; doi: https://doi.org/10.1101/2021.03.12.21253373

41. Senefeld JW, Klassen SA, Ford SK et al. Therapeutic use of convalescent plasma in COVID-19 patients with immunodeficiency. medRxiv 2020.11.08.20224790; doi: https://doi.org/10.1101/2020.11.08.20224790

42. Simonovich VA, Burgos Pratx LD, Scibona P et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med 2021 Feb 18;384(7):619–629. doi: 10.1056/NEJMoa2031304

43. Tarhini H, Recoing A, Bridier-Nahmias A et al. Long term SARS-CoV-2 infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection. J Infect Dis 2021 Feb 8:jiab075. doi: 10.1093/infdis/jiab075. Epub ahead of print

44. The RECOVERY Collaborative Group, Peter W Horby, Lise Estcourt et al. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv 2021.03.09.21252736; doi: https://doi.org/10.1101/2021.03.09.21252736

45. Van Damme KFA, Tavernier S, Van Roy N et al. Case Report: Convalescent Plasma, a Targeted Therapy for Patients with CVID and Severe COVID-19. Front Immunol 2020 Nov 20;11:596761. doi: 10.3389/fimmu.2020.596761

46. Singer M, Deutschman CS, Seymour CW et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016 Feb 23;315(8):801–810. doi: 10.1001/jama.2016.0287

47. Vincent JL, Lefrant JY, Kotfis K et al. Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). Intensive Care Med 2018; 44:337–344. doi: 10.1007/s00134-017-5043-2 48. Meyer N, Harhay MO, Small DS et al. Temporal trends in incidence, sepsis-related mortality, and hospital-based acute care after sepsis. Crit Care Med 2018; 46:354–360. doi: 10.1097/ccm.0000000000002872

48. Meyer N, Harhay MO, Small DS et al. Temporal trends in incidence, sepsis-related mortality, and hospital-based acute care after sepsis. Crit Care Med 2018; 46:354–360. doi: 10.1097/ccm.000000000000287249.

49. Fleischmann C, Scherag A, Adhikari NK et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am J Respir Crit Care Med 2016; 193:259–272. doi: 10.1164/rccm.201504-0781OC

50. Zahar JR,Timsit JF, Garrouste-Orgeas M et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Crit Care Med 2011; 39:1886–1895. doi: 10.1097/CCM.0b013e31821b827c

51. Blanco J, Muriel-Bombín A, Sagredo V et al. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Crit Care (2008) 12:R158. doi: 10.1186/cc7157

52. Southeast Asia Infectious Disease Clinical Research Network. Causes and outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional study. Lancet Glob Health (2017) 5:e157–167. doi: 10.1016/s2214-109x(17)30007-4

53. Attaway AH, Scheraga RG, Bhimraj A et al. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ 2021; 372 :n436 doi:10.1136/bmj.n436

54. Chen G, Wu D, Guo W et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest (2020) 130:2620–2629. 10.1101/2020.02.16.20023903

55. Gao Y, Li T, Han M et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol (2020) 92:791–796. 10.1002/jmv.257701-6

56. Braciale T, Hahn Y. Immunity to viruses. Immunol Rev 2013; 255:10.1111/imr.12109.10.1111/imr.12109

57. Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016;8(8):959–970

58. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015;16(5):448–457

59. Xinjuan Sun, Tianyuan Wang, Dayong Cai et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev 2020 Jun; 53: 38–42. 10.1016/j. cytogfr.2020.04.002

60. Weber A, Wasiliew P, Kracht M. Interleukin-1beta (IL- 1beta) processing pathway. Sci Signal 2010 Jan 19;3(105):cm2. doi: 10.1126/scisignal.3105cm2. PMID: 2008623

61. Jamilloux Y, Henry T, Belot A et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun Rev 2020 Jul;19(7):102567. doi: 10.1016/j.autrev.2020.102567

62. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 2000 Aug 1;50(3):184–195. doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H

63. Cole L, Bellomo R, Journois D et al. High-volume haemofiltration in human septic shock. Intensive Care Med 2001 Jun; 27(6): 978–986. doi: 10.1007/s001340100963

64. Honore PM, Jamez J, Wauthier M et al. Prospective evaluation of short-term, high-volume iso-volemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 2000 Nov; 28(11): 3581–3587. doi: 10.1097/00003246-200011000-00001

65. Tapia P, Chinchon E, Morales D et al. Effectiveness of short-term 6-hour high-volume hemofiltration during refracto-ry severe septic shock. J Trauma Acute Care Surg 2012 May; 72(5): 1228–1238. doi: 10.1097/TA.0b013e318248bc6c

66. Ratanarat R, Brendolan A, Piccinni P et al. Pulse highvolume haemofiltration for treatment of severe sepsis: effects on hemodynamics and survival. Crit Care 2005 Aug; 9(4):R294–302. doi: 10.1186/cc3529

67. Joannes-Boyau O, Honorу PM, Perez P et al. High- volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med 2013 Sep; 39(9): 1535–1546. doi: 10.1007/s00134-013-2967-z

68. Borthwick EM, Hill CJ, Rabindranath KS et al. High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 2017 Jan; 1:CD008075. doi: 10.1002/14651858.CD008075.pub3

69. Clark E, Molnar AO, Joannes-Boyau O et al. High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis. Crit Care 2014 Jan; 18(1):R7. doi: 10.1186/cc13184

70. Morgera S, Haase M, Kuss T et al. Pilot study on the effects of high cutoff hemofiltra-tion on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med 2006 Aug; 34(8): 2099–2104. doi: 10.1097/01.CCM.0000229147.50592.F9

71. Morgera S, Rocktäschel J, Haase M et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med 2003 Nov; 29(11): 1989–1995. doi: 10.1007/s00134-003-2003-9

72. Atan R, Peck L, Prowle J et al. A Double-Blind Randomized Controlled Trial of High Cutoff Versus Standard Hemofiltration in Critically Ill Patients With Acute Kidney Injury. Crit Care Med 2018 Oct; 46(10):e988–994. doi: 10.1097/CCM.0000000000003350

73. Kade G, Lubas A, Rzeszotarska A et al. Effectiveness of High Cut-Off Hemofilters in the Removal of Selected Cyto-kines in Patients During Septic Shock Accompanied by Acute Kidney Injury-Preliminary Study. Med Sci Monit 2016 Nov; 22: 4338–4344. doi: 10.12659/MSM.896819

74. Villa G, Chelazzi C, Morettini E et al. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: A prospective observational study. PLoS One 2017 Feb; 12(2):e0172039. doi: 10.1371/journal.pone.0172039

75. Chelazzi C, Villa G, D’Alfonso MG et al. Hemodialysis with High Cut-Off Hemodialyzers in Patients with Multi-Drug Resistant Gram- Negative Sepsis and Acute Kidney Injury: A Retrospective, Case-Control Study. Blood Pu-rif 2016; 42(3): 186–193. doi: 10.1159/000446978

76. Kim ST, Yamamoto C, Asabe H, Sato T, Takamiya T. Online haemodiafiltration: Effective removal of high molecular weight toxins and improvement in clinical manifestations of chronic haemodialysis patients. Nephrology 1996; 2(Suppl 1):S183–S186

77. Kaiser JP, Oppermann M, Gotze O et al. Significant reduction of factor D and immunosuppressive complement fragment Ba by hemofiltration. Blood Purif 1995; 13(6):314–321

78. Ward RA, Schmidt B, Hullin J et al. A comparison of on-line hemodiafiltration and high-flux hemodialysis: A prospective clinical study. J Am Soc Nephrol 2000; 11(12):2344–2350

79. Rama I, Llaudo I, Fontova P et al. Online Haemodiafiltration Improves Inflammatory State in Dialysis Patients: A Longitudinal Study. PLoS One 2016 Oct 26;11(10):e0164969. doi: 10.1371/journal.pone.0164969

80. Pizzarelli F, Cantaluppi V, Panichi V et al. Citrate high volume on-line hemodiafiltration modulates serum Interleukin-6 and Klotho levels: the multicenter randomized controlled study "Hephaestus". J Nephrol 2021 Feb 9. doi: 10.1007/s40620-020-00943-6

81. Morris C, Gray L, Giovannelli M. Early report: The use of Cytosorb™ haemabsorption column as an adjunct in managing severe sepsis: initial experiences, review and recommendations. J Intensive Care Soc 2015 Aug;16(3):257–264. doi: 10.1177/1751143715574855

82. Zuccari S, Damiani E, Domizi R et al. Changes in Cytokines, Haemodynamics and Microcirculation in Patients with Sepsis/Septic Shock Undergoing Continuous Renal Replacement Therapy and Blood Purification with CytoSorb. Blood Purif 2020;49 (1–2):107–113. doi: 10.1159/000502540

83. Knaup H, Stahl K, Schmidt BMW et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care 2018 Oct 30;22(1):285. doi: 10.1186/s13054-018-2220-9

84. Sanford KW, Balogun RA. Extracorporeal photopheresis: clinical use so far. J Clin Apher 2012;27(3):126–131. doi: 10.1002/jca.21217

85. Reeves JH, Butt WW, Shann F, Layton JE, Stewart A, Waring PM, Presneill JJ. Continuous plasmafiltration in sepsis syndrome. Plasmafiltration in Sepsis Study Group. Crit Care Med 1999 Oct;27(10):2096–2104. doi: 10.1097/00003246-199910000-00003

86. Busund R, Koukline V, Utrobin U, Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med 2002 Oct;28(10):1434–1439. doi: 10.1007/s00134-002-1410-7

87. Rimmer E, Houston BL, Kumar A et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 2014 Dec 20;18(6):699. doi: 10.1186/s13054-014-0699-2

88. Ronco C, Brendolan A, D'Intini V, Ricci Z, Lou WM, Bellomo R. Coupled plasma filtration adsorption: rationale, technical development and early clinical experience. Blood Purif 2003;21(6):409–416. doi: 10.1159/000073444

89. Livigni S, Bertolini G, Rossi C et al. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open 2014;4(1):1–10. doi: 10.1136/bmjopen-2013-003536


Review

For citations:


Rumyantsev A.Sh., Khasun M.Kh., Panina I.Yu., Korosteleva N.Yu., Shurakova V.A., Zemchenkov G.A. Extracorporal hemocorrection methods for COVID-19: are there outlooks? Nephrology (Saint-Petersburg). 2021;25(4):95-106. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-4-95-106

Views: 920


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)