Роль свободных легких цепей иммуноглобулинов в развитии и прогрессировании заболеваний почек
https://doi.org/10.36485/1561-6274-2021-25-6-27-38
Аннотация
Свободные легкие цепи (СЛЦ) иммуноглобулинов с момента их открытия в конце XIX начале XX веков представляют интерес для исследователей в различных отраслях медицины. Помимо гематологии, где активно изучается роль моноклональных СЛЦ (мСЛЦ), продуцируемых клоном В-клеточной линии, не стали исключением и другие специальности. Так, в современных неврологии и ревматологии активно исследуются поликлональные СЛЦ (пСЛЦ), вырабатываемые В-лимфоцитами при их избыточной иммунной/аутоиммунной стимуляции. В патогенезе заболеваний почек могут участвовать как мСЛЦ, так и пСЛЦ. Значение мСЛЦ для нефрологии связано, во-первых, с различными вариантами поражения почек при моноклональныхгаммапатиях - цилиндровой нефропатией, AL-амилоидозом и проч., а во-вторых, с инициацией эпителиально-мезенхимального перехода и прогрессированием склеротических изменений ренального тубулоинтерстиция. В отношении пСЛЦ их повышенный уровень при патологии почек различного генеза ассоциирован с неблагоприятным прогнозом не только в отношении прогрессирования хронической болезни почек, но и жизни. Это позволяет обоснованно предполагать участие пСЛЦ в инициации профибротических процессов в почке. На настоящий момент считается, что механизм эпителиально-мезенхимального перехода, лежащий в основе формирования фиброза почечной паренхимы, может быть опосредован не только мСЛЦ, но и пСЛЦ, что продемонстрировано в ограниченном числе исследований при некоторых гломерулопатиях. В обзоре изложены современные представления о СЛЦ, а также роли мСЛЦ и пСЛЦ при патологии почек.
Об авторах
А. А. ЧуркоРоссия
Асс. Чурко Анна Аркадьевна - кафедра пропедевтики внутренних болезней.
197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54. Тел.: (812) 338-69-01
М. С. Храброва
Россия
Доц. Храброва Мария Сергеевна - кандидат медицинских наук, кафедра пропедевтики внутренних болезней.
197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54. Тел.: (812) 338-69-01
А. В. Смирнов
Россия
Проф. Смирнов Алексей Владимирович - доктор медицинских наук Заведующий кафедрой пропедевтики внутренних болезней, директор НИИ нефрологии, Первый Санкт-Петербургский ГМУ им. акад. И.П. Павлова, кафедра пропедевтики внутренних болезней.
197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54. Тел.: +7(812)338-69-01
А. Ш. Румянцев
Россия
Проф. Румянцев Александр Шаликович - доктор медицинских наук.
199106, Санкт-Петербург, 21-я линия В.О., д. 8а. Тел.: +7 (812) 326-03-26
Список литературы
1. Henry BJ. On a new substance occurring in the urine of a patient with mollities ossium. Philos TransRSocLond 1848;138:55-62
2. Bayne Jones S, Wilson DW. Immunological reactions of Bence-Jones proteins. II. Differences between Bence-Jones proteins from various sources. Bull John Hopkins Hosp 1922;33:119-125
3. Longsworth LG, Shedlovsky T, Macinnes DA. Electrophoretic patterns of normal and pathological human blood serum and plasma. J Exp Med 1939;70(4):399-413. doi:10.1084/jem.70.4.399
4. Grabar P, Williams CA. Methode permettant l'etude conjuguee des proprietes electrophoretiques et immunochimiques d'un melange de proteines; application au serum sanguin [Method permitting the combined study of the electrophoretic and the immunochemical properties of protein mixtures; application to blood serum]. Bio-chim Biophys Acta 1953;10(1):193-194. doi:10.1016/0006-3002(53)90233-9
5. Edelman GM, Poulik MD. Studies on structural units of the gamma-globulins. J Exp Med 1961;113(5):861-884. doi:10.1084/jem.113.5.861
6. Edelman GM, Gally JA. The nature of Bence-Jones proteins. Chemical similarities to polypetide chains of myeloma globulins and normal gamma-globulins. J Exp Med 1962;116(2):207-227. doi:10.1084/jem.116.2.207
7. Brouwer J, Otting-van de Ruit M, Busking-van der Lely H. Estimation of free light chains of immunoglobulins by enzyme immunoassay. Clin Chim Acta 1985;150(3):267-274. doi:10.1016/0009-8981(85)90254-2
8. Solling K. Free light chains of immunoglobulins in normal serum and urine determined by radioimmunoassay. Scand J Clin Lab Invest 1975;35(5):407-412
9. Tillyer CR, Iqbal J, Raymond J, Gore M, McIlwain TJ. Im-munoturbidimetric assay for estimating free light chains of immunoglobulins in urine and serum. J Clin Pathol 1991;44(6):466-471. doi:10.1136/jcp.44.6.466
10. Selling J, Selling K. Free light chains of immunoglobulins in amyloidosis. Acta Med Scand 1979;206(4):283-287. doi:10.1111/j.0954-6820.1979.tb13511.x
11. Selling K, Selling J, Remer FK. Free light chains of immunoglobulins in serum from patients with rheumatoid arthritis, sarcoidosis, chronic infections and pulmonary cancer. Acta Med Scand 1981;209(6):473-477. doi:10.1111/j.0954-6820.1981.tb11632.x
12. Cooper A, Bluestone R. Free immunoglobulin light chains in connective tissue diseases. Ann Rheum Dis 1968;27(6):537-543. doi:10.1136/ard.27.6.537
13. Eickhoff K, Heipertz R, Wikstrom J. Determination of k/l immunoglobulin light chain ratios in CSF from patients with multiple sclerosis and other neurological diseases. Acta Neurol Scand 1978;57(5):385-395. doi:10.1111/j.1600-0404.1978.tb02842.x
14. Epstein WV, Tan M. Increase of L-chain proteins in the sera of patients with systemic lupus erythematosus and the synovial fluids of patients with peripheral rheumatoid arthritis. Arthritis Rheum 1966;9(5):713-719. doi:10.1002/art.1780090508
15. Bradwell AR, Carr-Smith HD, Mead GP et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 2001;47(4):673-680
16. te Velthuis H, Knop I, Stam P et al. N Latex FLC - new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med 2011;49(8):1323-1332. doi:10.1515/CCLM.2011.624
17. Lutteri L, Aldenhoff MC, Cavalier E. Evaluation of the new Sebia free light chain assay using the AP22 ELITE instrument. Clin Chim Acta 2018;487:161-167. doi:10.1016/j.cca.2018.09.030
18. Smith A, Wu AHB. Analytical and clinical concordance of free light chain assay. Pract Lab Med 2018;13:e00112. Published 2018 Dec 5. doi:10.1016/j.plabm.2018.e00112
19. Dispenzieri A, Kyle R, Merlini G et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23(2):215-224. doi:10.1038/leu.2008.307
20. Bibas M, Trotta MP, Cozzi-Lepri A et al. Role of serum free light chains in predicting HIV-associated non-Hodgkin lymphoma and Hodgkin's lymphoma and its correlation with antiretroviral therapy. Am J Hematol 2012;87(8):749-753. doi:10.1002/ajh.23236
21. Freedman MS, Thompson EJ, Deisenhammer F et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol 2005;62(6):865-870. doi:10.1001/archneur.62.6.865
22. Gottenberg JE, Aucouturier F, Goetz J et al. Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sjogren's syndrome. Ann Rheum Dis 2007;66(1):23-27. doi:10.1136/ard.2006.052159
23. Jolly M, Francis S, Aggarwal R et al. Serum free light chains, interferon-alpha, and interleukins in systemic lupus erythematosus. Lupus 2014;23(9):881-888. doi:10.1177/0961203314530793
24. Kraneveld AD, Kool M, van Houwelingen AH et al. Elicitation of allergic asthma by immunoglobulin free light chains. Proc Natl Acad Sci U S A 2005;102(5):1578-1583. doi:10.1073/pnas.0406808102
25. Teng M, Pirrie S, Ward DG et al. Diagnostic and mechanistic implications of serum free light chains, albumin and alpha-fetoprotein in hepatocellular carcinoma. Br J Cancer 2014;110(9):2277-2282. doi:10.1038/bjc.2014.121
26. Zemlin AE, Ipp H, Rensburg MA et al. Serum free light chains in patients with HIV infection: their association with markers of disease severity and antiretroviral use. J Clin Pathol2015;68(2):148-153. doi:10.1136/jclinpath-2014-202733
27. Day ED. The light chains of immunoglobulins. Advanced Immunochemistry, 1st ed. Wiley, USA (N.Y), 1996; 3-51
28. Mian IS, Bradwell AR, Olson AJ. Structure, function and properties of antibody binding sites. J Mol Biol 1991;217(1):133-151. doi:10.1016/0022-2836(91)90617-f
29. Bradwell AR. Serum Free Light Chain Analysis, 6th ed. The Binding Site Ltd., USA (Birmingham), 2010; 350
30. Nakano T, Matsui M, Inoue I, Awata T, Katayama S, Murako-shi T. Free immunoglobulin light chain: its biology and implications in diseases. Clin Chim Acta 2011;412(11-12):843-849. doi:10.1016/j.cca.2011.03.007
31. Waldmann TA, Strober W, Mogielnicki RP. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J Clin Invest 1972;51(8):2162-2174. doi:10.1172/JCI107023
32. Solomon A. Light chains of human immunoglobulins. Methods Enzymol 1985;116:101-121. doi:10.1016/s0076-6879(85)16008-8
33. Pesce AJ, Clyne DH, Pollak VE, Kant SK, Foulkes EC, Selenke WM. Renal tubular interactions of proteins. Clin Biochem 1980;13(5):209-215. doi:10.1016/s0009-9120(80)80025-7
34. Sanders PW, Herrera GA, Galla JH. Human Bence Jones protein toxicity in rat proximal tubule epithelium in vivo. Kidney Int 1987;32(6):851-861. doi:10.1038/ki.1987.286
35. Batuman V, Dreisbach AW, Cyran J. Light-chain binding sites on renal brush-border membranes. Am J Physiol 1990;258(5 Pt 2):F1259-F1265. doi:10.1152/ajprenal.1990.258.5.F1259
36. Klassen RB, Allen PL, Batuman V, Crenshaw K, Hammond TG. Light chains are a ligand for megalin. J Appl Physiol (1985) 2005;98(1):257-263. doi:10.1152/japplphysiol.01090.2003
37. Wochner RD, Strober W, Waldmann TA. The role of the kidney in the catabolism of Bence Jones proteins and immunoglobulin fragments. J Exp Med 1967;126(2):207-221. doi:10.1084/jem.126.2.207
38. Miettinen TA, Kekki M. Effect of impaired hepatic and renal function on Bence Jones protein catabolism in human subjects. Clin Chim Acta 1967;18:395-407. doi:10.1016/0009-8981(67)90036-8
39. Napodano C, Pocino K, Rigante D et al. Free light chains and autoimmunity. Autoimmun Rev 2019;18(5):484-492. doi:10.1016/j.autrev.2019.03.003
40. Redegeld FA, van der Heijden MW, Kool M et al. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nat Med 2002;8(7):694-701. doi:10.1038/nm722
41. Groot Kormelink T, Thio M, Blokhuis BR, Nijkamp FP, Redegeld FA. Atopic and non-atopic allergic disorders: current insights into the possible involvement of free immunoglobulin light chains. Clin Exp Allergy 2009;39(1):33-42. doi:10.1111/j.1365-2222.2008.03135.x
42. van den Beucken T, van Neer N, Sablon E et al. Building novel binding ligands to B7.1 and B7.2 based on human antibody single variable light chain domains. J Mol Biol 2001;310(3):591-601. doi:10.1006/jmbi.2001.4703
43. van der Heijden M, Kraneveld A, Redegeld F. Free immunoglobulin light chains as target in the treatment of chronic inflammatory diseases. Eur J Pharmacol 2006;533(1-3):319-326. doi:10.1016/j.ejphar.2005.12.065
44. Sun M, Gao QS, Li L, Paul S. Proteolytic activity of an antibody light chain. J Immunol 1994;153(11):5121-5126
45. Paul S, Li L, Kalaga R, Wilkins-Stevens P, Stevens FJ, Solomon A. Natural catalytic antibodies: peptide-hydrolyzing activities of Bence Jones proteins and VL fragment. J Biol Chem 1995;270(25):15257-15261. doi:10.1074/jbc.270.25.15257
46. Boivin D, Provengal M, Gendron S et al. Purification and characterization of a stimulator of plasmin generation from the antiangiogenic agent Neovastat: identification as immunoglobulin kappa light chain. Arch Biochem Biophys 2004;431(2):197-206. doi:10.1016/j.abb.2004.08.022
47. Jokiranta TS, Solomon A, Pangburn MK et al. Nephritogenic lambda light chain dimer: a unique human miniautoantibody against complement factor H. J Immunol 1999;163(8):4590-4596
48. Cohen G, Rudnicki M, Deicher R, Horl WH. Immunoglobulin light chains modulate polymorphonuclear leucocyte apoptosis. Eur J Clin Invest 2003;33(8):669-676. doi:10.1046/j.1365-2362.2003.01191.x
49. Смирнов АВ, Афанасьев БВ, Поддубная ИВ и др. Моноклональная гаммапатия ренального значения: консенсус гематологов и нефрологов России по введению нозологии, диагностике и обоснованности клон-ориентированной терапии. Нефрология 2019;23(6):9-28
50. Leung N, Bridoux F, Batuman V et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group [published correction appears in Nat Rev Nephrol. 2019 Feb;15(2):121]. Nat Rev Nephrol 2019;15(1):45-59. doi:10.1038/s41581-018-0077-4
51. Fermand JP, Bridoux F, Dispenzieri A et al. Monoclonal gammopathy of clinical significance: a novel concept with therapeutic implications. Blood 2018;132(14):1478-1485. doi:10.1182/blood-2018-04-839480
52. Храброва МС, Добронравов ВА, Смирнов АВ. Поражения почек, ассоциированные с моноклональными гаммапатиями: одноцентровое исследование. Нефрология 2018;22(6):38-46
53. Zand L, Nasr SH, Gertz MA et al. Clinical and prognostic differences among patients with light chain deposition disease, myeloma cast nephropathy and both. Leuk Lymphoma 2015;56(12):3357-3364. doi:10.3109/10428194.2015.1040011
54. Jain A, Haynes R, Kothari J, Khera A, Soares M, Rama-samy K. Pathophysiology and management of monoclonal gammopathy of renal significance. Blood Adv 2019;3(15):2409-2423. doi:10.1182/bloodadvances.2019031914
55. Zuo C, Zhu X Xu G. An update to the pathogenesis for monoclonal gammopathy of renal significance. Crit Rev Oncol Hematol 2020;149:102926. doi:10.1016/j.critrevonc.2020.102926
56. Khera A, Panitsas F, Djebbari F et al. Long term outcomes in monoclonal gammopathy of renal significance. Br J Haematol 2019;186(5):706-716. doi:10.1111/bjh.15987
57. Steiner N, Gobel G, Suchecki P, Prokop W, Neuwirt H, Gunsilius E. Monoclonal gammopathy of renal significance (MGRS) increases the risk for progression to multiple myeloma: an observational study of 2935 MGUS patients. Oncotarget 2017;9(2):2344-2356. Published 2017 Dec 18. doi:10.18632/oncotarget.23412
58. Смирнов АВ, Добронравов ВА, Храброва МС. Клиникоморфологическая характеристика и отдаленный прогноз при моноклональной гаммапатии ренального значения: опыт одного центра. Нефрология 2020;24(6):19-27
59. Leung N, Bridoux F, Hutchison CA et al. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood 2012;120(22):4292-4295. doi:10.1182/blood-2012-07-445304
60. Leung N, Bridoux F, Batuman V et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group [published correction appears in Nat Rev Nephrol. 2019 Feb;15(2):121]. Nat Rev Nephrol 2019;15(1):45-59. doi:10.1038/s41581-018-0077-4
61. Sethi S, Rajkumar SV. Monoclonal gammopathy-associated proliferative glomerulonephritis. Mayo Clin Proc 2013; 88 (11): 1284-1293. doi:10.1016/j.mayocp.2013.08.002
62. Bridoux F, Leung N, Hutchison CA et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int 2015;87(4):698-711. doi:10.1038/ki.2014.408
63. Smolens P, Venkatachalam M, Stein JH. Myeloma kidney cast nephropathy in a rat model of multiple myeloma. Kidney Int 1983; 24(2):192-204. doi:10.1038/ki.1983.144
64. Nasr SH, Preddie DC, Markowitz GS, Appel GB, D'Agati VD. Multiple myeloma, nephrotic syndrome and crystalloid inclusions in podocytes. Kidney Int 2006;69(3):616-620. doi:10.1038/sj.ki.5000144
65. Lee EJ, Lee SY Park SY et al. Crystalline podocytopathy and tubulopathy without overt glomerular proteinuria in a patient with multiple myeloma. Kidney Res Clin Pract 2016;35(4):259-262. doi:10.1016/j.krcp.2016.06.001
66. Yu XJ, Zhou XJ, Wang SX, Zhou FD, Zhao MH. Monoclonal light chain crystalline podocytopathy and tubulopathy associated with monoclonal gammopathy of renal significance: a case report and literature review. BMC Nephrol 2018;19(1):322. Published 2018 Nov 12. doi:10.1186/s12882-018-1108-x
67. Gupta V, El Ters M, Kashani K, Leung N, Nasr SH. Crystal-globulin-induced nephropathy. J Am Soc Nephrol 2015;26(3):525-529. doi:10.1681/ASN.2014050509
68. Herrera GA. Proximal tubulopathies associated with monoclonal light chains: the spectrum of clinicopathologic manifestations and molecular pathogenesis. Arch Pathol Lab Med 2014;138(10):1365-1380. doi:10.5858/arpa.2013-0493-OA
69. Kapur U, Barton K, Fresco R, Leehey DJ, Picken MM. Expanding the pathologic spectrum of immunoglobulin light chain proximal tubulopathy. Arch Pathol Lab Med 2007;131(9):1368-1372. doi:10.5858/2007-131-1368-ETPSOI
70. Nasr SH, Valeri AM, Cornell LD et al. Renal monoclonal immunoglobulin deposition disease: a report of 64 patients from a single institution. Clin J Am Soc Nephrol 2012;7(2):231-239. doi:10.2215/CJN.08640811
71. Lloyd IE, Gallan A, Huston HK et al. C3 glomerulopathy in adults: a distinct patient subset showing frequent association with monoclonal gammopathy and poor renal outcome. Clin Kidney J 2016;9(6):794-799. doi:10.1093/ckj/sfw090
72. Ravindran A, Go RS, Fervenza FC, Sethi S. Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int 2017;91(3):691-698. doi:10.1016/j.kint.2016.09.045
73. Solomon A, Weiss DT, Kattine AA. Nephrotoxic potential of Bence Jones proteins. N Engl J Med 1991;324(26):1845-1851. doi:10.1056/NEJM199106273242603
74. Sanders PW, Booker BB. Pathobiology of cast nephropathy from human Bence Jones proteins. J Clin Invest 1992;89(2): 630-639. doi:10.1172/JCI115629
75. Huang ZQ, Kirk KA, Connelly KG, Sanders PW. Bence Jones proteins bind to a common peptide segment of Tamm-Horsfall glycoprotein to promote heterotypic aggregation. J Clin Invest 1993;92(6):2975-2983. doi:10.1172/JCI116920
76. Huang ZQ, Sanders PW. Biochemical interaction between Tamm-Horsfall glycoprotein and Ig light chains in the pathogenesis of cast nephropathy. Lab Invest 1995;73(6):810-817
77. Sengul S, Zwizinski C, Batuman V. Role of MAPK pathways in light chain-induced cytokine production in human proximal tubule cells. Am J Physiol Renal Physiol 2003;284(6):F1245-F1254. doi:10.1152/ajprenal.00350.2002
78. Li M, Hering-Smith KS, Simon EE, Batuman V. Myeloma light chains induce epithelial-mesenchymal transition in human renal proximal tubule epithelial cells. Nephrol Dial Transplant 2008;23(3):860-870. doi:10.1093/ndt/gfm670
79. Liu Y New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 2010;21(2):212-222. doi:10.1681/ASN.2008121226
80. Sanders PW. Mechanisms of light chain injury along the tubular nephron. J Am Soc Nephrol 2012;23(11):1777-1781. doi:10.1681/ASN.2012040388
81. Sengul S, Zwizinski C, Simon EE, Kapasi A, Singhal PC, Batuman V. Endocytosis of light chains induces cytokines through activation of NF-kappaB in human proximal tubule cells. Kidney Int 2002;62(6):1977-1988. doi:10.1046/j.1523-1755.2002.00660.x
82. Wang PX, Sanders PW. Immunoglobulin light chains generate hydrogen peroxide. J Am Soc Nephrol 2007;18(4):1239-1245. doi:10.1681/ASN.2006111299
83. Basnayake K, Ying WZ, Wang PX, Sanders PW. Immunoglobulin light chains activate tubular epithelial cells through redox signaling. J Am Soc Nephrol 2010;21(7):1165-1173. doi:10.1681/ASN.2009101089
84. Sengul S, Zwizinski C, Batuman V. Role of MAPK pathways in light chain-induced cytokine production in human proximal tubule cells. Am J Physiol Renal Physiol 2003;284(6):F1245-F1254. doi:10.1152/ajprenal.00350.2002
85. He JC, Husain M, Sunamoto M et al. Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. J Clin Invest 2004;114(5): 643-651. doi:10.1172/JCI21004
86. Upadhyay R,Ying WZ, Nasrin Z et al. Free light chains injure proximal tubule cells through the STAT1/HMGB1/TLR axis. JCI Insight 2020;5(14):e137191. Published 2020 Jul 23. doi:10.1172/jci.insight.137191
87. Herrera GA, Russell WJ, Isaac J et al. Glomerulopathic light chain-mesangial cell interactions modulate in vitro extracellular matrix remodeling and reproduce mesangiopathic findings documented in vivo. Ultrastruct Pathol 1999;23(2):107-126
88. Keeling J, Teng J, Herrera GA. AL-amyloidosis and light-chain deposition disease light chains induce divergent phenotypic transformations of human mesangial cells. Lab Invest 2004;84(10):1322-1338. doi:10.1038/labinvest.3700161
89. Keeling J, Herrera GA. Matrix metalloproteinases and mesangial remodeling in light chain-related glomerular damage. Kidney Int 2005;68(4):1590-1603. doi:10.1111/j.1523-1755.2005.00571.x
90. Herrera GA, Teng J, Turbat-Herrera EA, Zeng C, Del Pozo-Yauner L. Understanding mesangial pathobiology in AL-Amyloidosis and monoclonal Ig light chain deposition disease. Kidney Int Rep 2020;5(11):1870-1893. Published 2020 Jul 21. doi:10.1016/j.ekir.2020.07.013
91. Herrera GA, Del Pozo-Yauner L, Teng J et al. Glomerulopathic Light Chain-Mesangial Cell Interactions: Sortilin-Related Receptor (SORL1) and Signaling. Kidney Int Rep 2021;6(5):1379-1396. Published 2021 Mar 13. doi:10.1016/j.ekir.2021.02.014
92. Burmeister A, Assi LK, Ferro CJ et al. The relationship between high-sensitivity CRP and polyclonal free light chains as markers of inflammation in chronic disease. Int J Lab Hematol 2014;36(4):415-424. doi:10.1111/ijlh.12159
93. Rigante D. A systematic approach to autoinflammatory syndromes: a spelling booklet for the beginner. Expert Rev Clin Immunol 2017;13(6):571-597. doi:10.1080/174466 6X.2017.1280396
94. Draborg AH, Lydolph MC, Westergaard M et al. Correction: Elevated Concentrations of Serum Immunoglobulin Free Light Chains in Systemic Lupus Erythematosus Patients in Relation to Disease Activity, Inflammatory Status, B Cell Activity and Epstein-Barr Virus Antibodies. PLoS One 2016;11(1):e0148151. Published 2016 Jan 25. doi:10.1371/journal.pone.0148151
95. Aggarwal R, Sequeira W, Kokebie R et al. Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care Res (Hoboken) 2011;63(6):891-898. doi:10.1002/acr.20446
96. Cambron ABR, Jimenez JJ, Canamero MAB et al. Determination of serum free light chains as a marker of systemic lupus flare. Clin Rheumatol 2020;39(2):449-454. doi:10.1007/s10067-019-04827-4
97. Deng X, Crowson CS, Rajkumar SV et al. Elevation of serum immunoglobulin free light chains during the preclinical period of rheumatoid arthritis. J Rheumatol 2015;42(2):181-187. doi:10.3899/jrheum.140543
98. Gulli F, Napodano C, Marino M et al. Serum immunoglobulin free light chain levels in systemic autoimmune rheumatic diseases. Clin Exp Immunol2020;199(2):163-171. doi:10.1111/cei.13385
99. Gottenberg JE, Aucouturier F, Goetz J et al. Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sjogren's syndrome. Ann Rheum Dis 2007;66(1):23-27. doi:10.1136/ard.2006.052159
100. Lanteri A, Sobanski V, Langlois C et al. Serum free light chains of immunoglobulins as biomarkers for systemic sclerosis characteristics, activity and severity. Autoimmun Rev 2014;13(9):974-980. doi:10.1016/j.autrev.2014.07.003
101. Bosello S, Basile U, De Lorenzis E et al. Free light chains of immunoglobulins in patients with systemic sclerosis: correlations with lung involvement and inflammatory milieu. J Clin Pathol 2018;71(7):620-625. doi:10.1136/jclinpath-2017-204656
102. Hassan-Smith G, Durant L, Tsentemeidou A et al. High sensitivity and specificity of elevated cerebrospinal fluid kappa free light chains in suspected multiple sclerosis. J Neuroimmunol 2014;276(1-2):175-179. doi:10.1016/j.jneuroim.2014.08.003
103. Freedman MS, Thompson EJ, Deisenhammer F et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol 2005;62(6):865-870. doi:10.1001/archneur.62.6.865
104. Rathbone E, Durant L, Kinsella J et al. Cerebrospinal fluid immunoglobulin light chain ratios predict disease progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 2018;89(10):1044-1049. doi:10.1136/jnnp-2018-317947
105. Basile U, La Rosa G, Napodano C et al. Free light chains a novel biomarker of cardiovascular disease. A pilot study. Eur Rev Med Pharmacol Sci 2019;23(6):2563-2569. doi:10.26355/eur-rev_201903_17405
106. Jackson CE, Haig C, Welsh P et al. Combined Free Light Chains Are Novel Predictors of Prognosis in Heart Failure. JACC Heart Fail 2015;3(8):618-625. doi:10.1016/j.jchf.2015.03.014
107. Matsumori A, Shimada T, Shimada M, Otani H, Dray-son MT, Mason JW. Immunoglobulin Free Light Chains as Inflammatory Biomarkers of Atrial Fibrillation. Circ Arrhythm Electrophysiol 2020;13(11):e009017. doi:10.1161/CIRCEP.120.009017
108. Bellary S, Faint JM, Assi LK et al. Elevated serum free light chains predict cardiovascular events in type 2 diabetes. Diabetes Care 2014;37(7):2028-2030. doi:10.2337/dc13-2227
109. Dispenzieri A, Katzmann JA, Kyle RA et al. Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin Proc 2012;87(6):517-523. doi:10.1016/j.mayocp.2012.03.009
110. Anandram S, Assi LK, Lovatt T et al. Elevated, combined serum free light chain levels and increased mortality: a 5-year followup, UK study. J Clin Pathol 2012;65(11):1036-1042. doi:10.1136/jclinpath-2012-200910
111. Hutchison CA, Burmeister A, Harding SJ et al. Serum polyclonal immunoglobulin free light chain levels predict mortality in people with chronic kidney disease. Mayo Clin Proc 2014;89(5): 615-622. doi:10.1016/j.mayocp.2014.01.028
112. Assi LK, McIntyre N, Fraser S et al. The Association between Polyclonal Combined Serum Free Light Chain Concentration and Mortality in Individuals with Early Chronic Kidney Disease [published correction appears in PLoS One. 2015;10(10):e0141404]. PLoS One 2015;10(7):e0129980. Published 2015 Jul 1. doi: 10.1371/journal.pone.0129980
113. Bohle A, Grund KE, Mackensen S, Tolon M. Correlations between renal interstitium and level of serum creatinine. Morphometric investigations of biopsies in perimembranous glomerulonephritis. Virchows Arch A Pathol Anat Histol 1977;373(1):15-22. doi:10.1007/BF00432465
114. Ma LJ, Yang H, Gaspert A et al. Transforming growth factor-beta-dependent and-independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. Am J Pathol 2003;163(4):1261-1273. doi:10.1016/s0002-9440(10)63486-4
115. Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J. Tubulointerstitial damage and progression of renal failure. Kidney Int Suppl 2005;(99):S82-S86. doi:10.1111/j.1523-1755.2005.09915.x
116. Neilson EG. Mechanisms of disease: Fibroblasts-a new look at an old problem. Nat Clin Pract Nephrol2006;2(2):101-108. doi:10.1038/ncpneph0093
117. Hewitson TD, Holt SG, Smith ER. Progression of Tubulointerstitial Fibrosis and the Chronic Kidney Disease Phenotype - Role of Risk Factors and Epigenetics. Front Pharmacol 2017;8:520. Published 2017 Aug 8. doi:10.3389/fphar.2017.00520
118. Taylor EB, Ryan MJ. Freedom isn't always free: immunoglobulin free light chains promote renal fibrosis. J Clin Invest 2019;129(7):2660-2662. Published 2019 Jun 17. doi:10.1172/JCI129704
119. Yang J, Liu Y Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 2001;159(4):1465-1475. doi:10.1016/S0002-9440(10)62533-3
120. Rastaldi MP, Ferrario F, Giardino L et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 2002;62(1):137-146. doi:10.1046/j.1523-1755.2002.00430.x
121. Liu Y Epithelial to mesenchymal transition in renal fi-brogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004;15(1):1-12. doi:10.1097/01.asn.0000106015.29070.e7
122. Forino M, Torregrossa R, Ceol M et al. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblast transdifferentiation of human kidney tubular epithelial cells in primary culture. Int J Exp Pathol 2006;87(3):197-208. doi:10.1111/j.1365-2613.2006.00479.x
123. Mucsi I, Rosivall L. Epithelial-mesenchymal transition in renal tubular cells in the pathogenesis of progressive tubulointerstitial fibrosis. Acta Physiol Hung 2007;94(1-2):117-131. doi:10.1556/APhysiol.94.2007.1-2.11
124. Burns WC, Kantharidis P, Thomas MC. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs 2007;185(1-3):222-231. doi:10.1159/000101323
125. Fine LG, Ong AC, Norman JT. Mechanisms of tubulointerstitial injury in progressive renal diseases. Eur J Clin Invest 1993;23(5):259-265. doi:10.1111/j.1365-2362.1993.tb00771.x
126. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006;17(1):17-25. doi:10.1681/ASN.2005070757
127. Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 2012;27(6):901-909. doi:10.1007/s00467-011-1992-9
128. Zheng G, Wang X Mahajan D et al. The role of tubulointerstitial inflammation. Kidney Int Suppl 2005;(94):S96-S100. doi:10.1111/j.1523-1755.2005.09423.x
129. Gorriz JL, Martinez-Castelao A. Proteinuria: detection and role in native renal disease progression. Transplant Rev (Orlando) 2012;26(1):3-13. doi:10.1016/j.trre.2011.10.002
130. Erkan E. Proteinuria and progression of glomerular diseases. Pediatr Nephrol 2013;28(7):1049-1058. doi:10.1007/s00467-012-2335-1
131. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 1999;56(5):1627-1637. doi:10.1046/j.1523-1755.1999.00721.x
132. Tonolo G, Cherchi S. Tubulointerstitial disease in diabetic nephropathy. Int J Nephrol Renovasc Dis 2014;7:107-115. Published 2014 Mar 21. doi:10.2147/IJNRD.S37883
133. Vallon V, Komers R. Pathophysiology of the diabetic kidney. ComprPhysiol2011;1(3):1175-1232. doi:10.1002/cphy.c100049
134. Batuman V. The pathogenesis of acute kidney impairment in patients with multiple myeloma. Adv Chronic Kidney Dis 2012;19(5):282-286. doi:10.1053/j.ackd.2012.04.009
135. Basnayake K, Stringer SJ, Hutchison CA, Cockwell P The biology of immunoglobulin free light chains and kidney injury. Kidney Int 2011;79(12):1289-1301. doi:10.1038/ki.2011.94
136. Rocchetti MT, Papale M, d'Apollo AM et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy. Clin J Am Soc Nephrol 2013;8(7):1115-1125. doi:10.2215/CJN.05950612
137. Parasuraman R, Wolforth SC, Wiesend WN et al. Contribution of polyclonal free light chain deposition to tubular injury. Am J Nephrol2013;38(6):465-474. doi:10.1159/000356557
138. Hanaoka M, Gono T, Kawaguchi Y et al. Urinary free light chain is a potential biomarker for ISN/RPS class III/IV lupus nephritis. Rheumatology (Oxford) 2013;52(12):2149-2157. doi:10.1093/rheumatology/ket108
139. Groop L, Makipernaa A, Stenman S, DeFronzo RA, Teppo AM. Urinary excretion of kappa light chains in patients with diabetes mellitus. Kidney Int 1990;37(4):1120-1125. doi:10.1038/ki.1990.94
140. Hutchison CA, Cockwell P, Harding S, Mead GP, Bradwell AR, Barnett AH. Quantitative assessment of serum and urinary polyclonal free light chains in patients with type II diabetes: an early marker of diabetic kidney disease?. Expert Opin Ther Targets 2008;12(6):667-676. doi:10.1517/14728222.12.6.667
141. Matheson A, Willcox MD, Flanagan J, Walsh BJ. Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab Res Rev2010;26(3):150-171. doi:10.1002/dmrr.1068
142. Hassan SB, Hanna MO. Urinary к and X immunoglobulin light chains in normoalbuminuric type 2 diabetes mellitus patients. J Clin Lab Anal 2011;25(4):229-232. doi:10.1002/jcla.20463
143. Matsumori A, Shimada T, Shimada M, Drayson MT. Immunoglobulin free light chains: an inflammatory biomarker of diabetes. Inflamm Res 2020;69(8):715-718. doi:10.1007/s00011-020-01357-7
144. Sanchez-Castanon M, Gago M, Fernandez-Fresnedo G et al. Quantitative assessment of serum free light chains in renal transplantation. Transplant Proc 2010;42(8):2861-2863. doi:10.1016/j.transproceed.2010.08.018
145. Bargnoux AS, Simon N, Garrigue V et al. Glomerular filtration rate as a determinant of free light chains in renal transplantation. Clin Biochem 2013;46(16-17):1764-1766. doi:10.1016/j.clinbiochem.2013.08.024
146. Zhang R, Li M, Chouhan KK, Simon EE, Hamm LL, Batuman V. Urine free light chains as a novel biomarker of acute kidney allograft injury. Clin Transplant 2013;27(6):953-960. doi:10.1111/ctr.12271
147. Hutchison CA, Harding S, Hewins P et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin J Am Soc Nephrol 2008;3(6):1684-1690. doi:10.2215/CJN.02290508
148. Fenton A, Jesky MD, Webster R et al. Association between urinary free light chains and progression to end stage renal disease in chronic kidney disease. PLoS One 2018;13(5):e0197043. Published 2018 May 9. doi:10.1371/journal.pone.0197043
149. Fraser SDS, Fenton A, Harris S et al. The Association of Serum Free Light Chains With Mortality and Progression to End-Stage Renal Disease in Chronic Kidney Disease: Systematic Review and Individual Patient Data Meta-analysis [published correction appears in Mayo Clin Proc. 2017 Dec;92 (12):1866. Kalra, Phil [corrected to Kalra, Phil A]]. Mayo Clin Proc 2017;92(11):1671-1681. doi:10.1016/j.mayocp.2017.08.021
150. Ritchie J, Assi LK, Burmeister A, Hoefield R, Cockwell P, Kalra PA. Association of Serum Ig Free Light Chains with Mortality and ESRD among Patients with Nondialysis-Dependent CKD. Clin J Am Soc Nephrol 2015;10(5):740-749. doi:10.2215/CJN.09660914
151. Desjardins L, Liabeuf S, Lenglet A et al. Association between free light chain levels, and disease progression and mortality in chronic kidney disease. Toxins (Basel) 2013;5(11):2058-2073. Published 2013 Nov 8. doi:10.3390/toxins5112058
Рецензия
Для цитирования:
Чурко А.А., Храброва М.С., Смирнов А.В., Румянцев А.Ш. Роль свободных легких цепей иммуноглобулинов в развитии и прогрессировании заболеваний почек. Нефрология. 2021;25(6):27-38. https://doi.org/10.36485/1561-6274-2021-25-6-27-38
For citation:
Churko A.A., Khrabrova M.S., Smirnov A.V., Rumyantsev A.Sh. Immunoglobulin free light chains in developing and progression of kidney diseases. Nephrology (Saint-Petersburg). 2021;25(6):27-38. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-6-27-38