Preview

Nephrology (Saint-Petersburg)

Advanced search

STRUCTURAL AND FUNCTIONAL INTESTINAL BARRIER ABNORMALITIES AND CHRONIC KIDNEY DISEASE. LITERATURE REVIEW. PART II

https://doi.org/10.36485/1561-6274-2022-26-2-46-64

Abstract

The last few decades have been marked by significant progress in the investigation of the intestinal microbial-tissue complex and its role in the pathogenesis of a wide range of diseases. The presence of intestinal barrier dysfunction has also been confirmed in various nephropathies. Patients with chronic kidney disease (CKD) are characterized by specific alterations of the qualitative and quantitative composition of the gut microbiota. These changes contribute to an increase in the fermentation of food proteins into uremic toxins, such as p-cresyl sulfate, indoxyl sulfate and trimethylaminoxide, disorders of immune tolerance mechanisms of the mucous membrane, disorganization of intestinal epithelium tight junctions, which inevitably leads to an increase of transepithelial permeability. Translocation of bacteria and microbial metabolism products from the intestinal lumen into the systemic circulation is responsible for systemic inflammation, which is currently considered as one of the leading causes of the CKD progression and related complications. However, the exact mechanisms of gut-kidney interaction remain poorly understood. The second part of the review gives a detailed description of the structural and functional disorders of the intestinal muco-epithelial barrier identified in various nephropathies. The mechanisms of uremia-induced intestinal epithelial disruption are discussed, as well as the current therapeutic strategies that may attenuate consequences of intestinal barrier dysfunction in patients with CKD.

About the Authors

M. O. Pyatchenkov
Military Medical Academy S.M. Kirov
Russian Federation

Mikhail O. Pyatchenkov, PhD, Department of nephrology and blood purification

194044, St. Petersburg
Phone: +7 (812) 5424314



A. S. Rumyantsev
Saint Petersburg State University; Pavlov First Saint Petersburg State Medical University
Russian Federation

Alexandr Sh.Rumyantsev, MD, PhD, DMedSci. Department of Faculty Therapy, Saint Petersburg State University; Department of Propaedeutics of Internal Diseases, Pavlov First Saint Petersburg State Medical University

199106, St. Petersburg
Phone: +7 (812) 3260326



E. V. Sherbakov
Military Medical Academy S.M. Kirov
Russian Federation

Evgeniy V.Scherbakov, Department of nephrology and blood purification

194044, St. Petersburg
Phone: +7 (812) 5424314



A. G. Markov
Saint Petersburg State University
Russian Federation

Alexander G. Markov, D.Sc., professor, Department of General
Physiology

199034, St. Petersburg, Universitetskaj nab. 7-9
Phone: +7 (812) 3289589



References

1. Gagliardi A, Totino V, Cacciotti F et al. Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health 2018;15(8):1679. doi:10.3390/ijerph15081679

2. Tkachenko EI, Grinevich VB, Gubonina IV et al. Disease as a result of violations of the symbiotic relationship between the host and the microbiota with pathogens. Bulletin of the Russian Military Medical Academy. 2021;23(2):243–252 (In Russ.). doi:10.17816/brmma.58117

3. Chelakkot C, Ghim J, Ryu S. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018;50(8):1–9. doi:10.1038/s12276-018-0126-x

4. Turner J. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009;9(11):799–809. doi:10.1038/nri2653

5. Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019;68(8):1516–1526. doi:10.1136/gutjnl-2019-318427

6. Vaziri N, Zhao Y, Pahl M. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 2016;31(5):737–746. doi:10.1093/ndt/gfv095

7. Rysz J, Franczyk B, Ławiński J et al. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins (Basel) 2021;13(4):252. doi:10.3390/toxins13040252

8. Pyatchenkov MO, Markov AG, Rumyantsev AS. Structural and functional intestinal barrier abnormalities and chronic kidney disease. Literature review. Part I. Nephrology (Saint-Petersburg) 2022;26(1):10–26 (In Russ.). doi:10.36485/1561-6274-2022-26-1-10-26

9. Vaziri N, Zhao Y, Pahl M. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 2016;31(5):737–746. doi:10.1093/ndt/gfv095

10. Lukichev BG, Rumyantsev AS, Akimenko V. Colonic microbiota and chronic kidney disease. Message one. Nephrology (SaintPetersburg) 2018;22(4):57–73 (In Russ.). doi:10.24884/1561-6274-2018-22-4-57-73

11. Magnusson M, Magnusson K, Sundqvist T, Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron 1990;56(3):306–311. doi:10.1159/000186158

12. Magnusson M, Magnusson K, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut 1991;32(7):754–759. doi:10.1136/gut.32.7.754

13. Vaziri N, Yuan J, Rahimi A et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant 2012;27(7):2686–2693. doi:10.1093/ndt/gfr624

14. Vaziri N, Yuan J, Nazertehrani S et al. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol 2013;38(2):99–103. doi:10.1159/000353764

15. Gonzalez A, Krieg R, Massey H et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol Dial Transplant 2019;34(5):783–794. doi:10.1093/ndt/gfy238

16. Yang J, Lim S, Ko Y et al. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant 2019;34(3):419–428. doi:10.1093/ndt/gfy172

17. Zhou N, Shen Y, Fan L et al. The Characteristics of Intestinal-Barrier Damage in Rats With IgA Nephropathy. Am J Med Sci 2020;359(3):168–176. doi:10.1016/j.amjms.2019.11.011

18. Kovács T, Kun L, Schmelczer M et al. Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability. Am J Nephrol 1996;16(6):500–505. doi:10.1159/000169050

19. de Almeida Duarte J, de Aguilar-Nascimento J, Nascimento M, Nochi R Jr. Bacterial translocation in experimental uremia. Urol Res 2004;32(4):266–270. doi:10.1007/s00240-003-0381-7

20. Bossola M, Sanguinetti M, Scribano D et al. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients. Clin J Am Soc Nephrol 2009;4(2):379–385. doi:10.2215/CJN.03490708

21. Wang F, Jiang H, Shi K et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton) 2012;17(8):733–738. doi:10.1111/j.1440-1797.2012.01647.x

22. Feroze U, Kalantar-Zadeh K, Sterling K et al. Examining associations of circulating endotoxin with nutritional status, inflammation, and mortality in hemodialysis patients. J Ren Nutr 2012;22(3):317–326. doi:10.1053/j.jrn.2011.05.004

23. Guo S, Al-Sadi R, Said H, Ma T. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013;182(2):375–387. doi:10.1016/j.ajpath.2012.10.014

24. Chaves L, Mc Skimming D, Bryniarski M et al. Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis. Am J Physiol Renal Physiol 2018;315(3):F487–F502. doi:10.1152/ajprenal.00092.2018

25. Terawaki H, Yokoyama K, Yamada Y et al. Low-grade endotoxemia contributes to chronic inflammation in hemodialysis patients: examination with a novel lipopolysaccharide detection method. Ther Apher Dial 2010;14(5):477–482. doi:10.1111/j.1744-9987.2010.00815.x

26. Poesen R, Ramezani A, Claes K et al. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clin J Am Soc Nephrol 2015;10(9):1525–1533. doi:10.2215/CJN.03100315

27. Stubbs J, House J, Ocque A et al. Serum Trimethylamine-NOxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. J Am Soc Nephrol 2016;27(1):305–313. doi:10.1681/ASN.2014111063

28. Kim S, Song I. The clinical impact of gut microbiota in chronic kidney disease. Korean J Intern Med 2020;35(6):1305–1316. doi:10.3904/kjim.2020.411

29. Salguero M, Al-Obaide M, Singh R et al. Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease. Exp Ther Med 2019;18(5):3461–3469. doi:10.3892/etm.2019.7943

30. Al-Obaide M, Singh R, Datta P et al. Gut Microbiota-Dependent Trimethylamine-N-oxide and Serum Biomarkers in Patients with T2DM and Advanced CKD. J Clin Med 2017;6(9):86. doi:10.3390/jcm6090086

31. Aronov P, Luo F, Plummer N et al. Colonic contribution to uremic solutes. J Am Soc Nephrol 2011;22(9):1769–1776. doi:10.1681/ASN.2010121220

32. Poesen R, Windey K, Neven E et al. The Influence of CKD on Colonic Microbial Metabolism. J Am Soc Nephrol 2016;27(5):1389–1399. doi:10.1681/ASN.2015030279

33. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins 2018;10(1): 33. doi:10.3390/toxins10010033

34. Gryp T, De Paepe K, Vanholder R et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int 2020;97(6):1230–1242. doi:10.1016/j.kint.2020.01.028

35. Wang X, Yang S, Li S et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020;69(12):2131-2142. doi:10.1136/gutjnl-2019-319766

36. Fasano A, Not T, Wang W et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000;355(9214):1518–1519. doi:10.1016/S0140-6736(00)02169-3

37. Leech B, Schloss J, Steel A. Association between increased intestinal permeability and disease: A systematic review. Adv Integr Med 2019;6:23–34. doi:10.1016/j.aimed.2018.08.003

38. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016;4(4):e1251384. doi:10.1080/21688370.2016.1251384

39. Ficek J, Wyskida K, Ficek R et al. Relationship between plasma levels of zonulin, bacterial lipopolysaccharides, D-lactate and markers of inflammation in haemodialysis patients. Int UrolNephrol 2017;49(4):717–725. doi:10.1007/s11255-016-1495-5

40. Carpes L, Nicoletto B, Canani L et al. Could serum zonulin be an intestinal permeability marker in diabetes kidney disease? PLoS One. 2021;16(6):e0253501. doi:10.1371/journal.pone.0253501

41. Sirin F, Korkmaz H, Eroglu I et al. Serum zonulin levels in type 2 diabetes patients with diabetic kidney disease. Endokrynol Pol 2021;72(5):545–549. doi:10.5603/EP.a2021.0056

42. Hasslacher C, Kulozik F, Platten I et al. Serum zonulin as parameter of intestinal permeability in longstanding type 2 diabetes: correlations with metabolism parameter and renal function. J Diabetes Metab Disord Control 2018;5(2):58–62. doi:10.15406/jdmdc.2018.05.00138

43. Dschietzig T, Boschann F, Ruppert J et al. Plasma Zonulin and its Association with Kidney Function, Severity of Heart Failure, and Metabolic Inflammation. Clin Lab 2016;62(12):2443–2447. doi:10.7754/Clin.Lab.2016.160512

44. Lukaszyk E, Lukaszyk M, Koc-Zorawska E et al. Zonulin, inflammation and iron status in patients with early stages of chronic kidney disease. Int Urol Nephrol 2018;50(1):121–125. doi:10.1007/s11255-017-1741-5

45. Malyszko J, Koc-Zorawska E, Levin-Iaina N, Malyszko J. Zonulin, iron status, and anemia in kidney transplant recipients: are they related? Transplant Proc 2014 Oct;46(8):2644–2646. doi:10.1016/j.transproceed.2014.09.018. PMID:25380885.

46. Trachtman H, Gipson D, Lemley K et al. Plasma Zonulin Levels in Childhood Nephrotic Syndrome. Front Pediatr 2019;7:197. doi:10.3389/fped.2019.00197

47. Okada K, Sekino M, Funaoka H et al. Intestinal fatty acidbinding protein levels in patients with chronic renal failure. J Surg Res 2018;230:94–100. doi:10.1016/j.jss.2018.04.057

48. Swift O, Vilar E, Farrington K. Unexplained inflammation in end-stage kidney disease: Is the combination of enhanced gastrointestinal permeability and reticuloendothelial dysfunction its cause? Semin Dial 2019;32(5):417–423. doi:10.1111/sdi.12810

49. Wang S, Lv D, Jiang S et al. Quantitative reduction in shortchain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin Sci (Lond) 2019;133(17):1857–1870. doi:10.1042/CS20190171

50. Borges N, Barros A, Nakao L et al. Protein-Bound Uremic Toxins from Gut Microbiota and Inflammatory Markers in Chronic Kidney Disease. J Ren Nutr 2016;26(6):396–400. doi:10.1053/j.jrn.2016.07.005

51. Aguilera A, Bajo M, Espinoza M et al. Gastrointestinal and pancreatic function in peritoneal dialysis patients: their relationship with malnutrition and peritoneal membrane abnormalities. Am J Kidney Dis 2003;42(4):787–796. doi:10.1016/s0272-6386(03)00920-x

52. Terpstra M, Singh R, Geerlings S, Bemelman F. Measurement of the intestinal permeability in chronic kidney disease. World J Nephrol 2016;5(4):378–388. doi:10.5527/wjn.v5.i4.378

53. Vaziri N, Goshtasbi N, Yuan J et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol 2012;36(5):438–443. doi:10.1159/000343886

54. Vaziri N, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013;37(1):1–6. doi:10.1159/000345969

55. Garcia A, Macedo M, Azevedo M et al. Effect of uremic state in intestine through a co-culture in vitro intestinal epithelial model. Int J Pharm 2020;584:119450. doi:10.1016/j.ijpharm.2020.119450

56. Yang J, Lim S, Ko Y et al. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transplant 2019;34(3):419–428. doi:10.1093/ndt/gfy172

57. Coopersmith C, Chang K, Swanson P et al. Overexpression of Bcl-2 in the intestinal epithelium improves survival in septic mice. Crit Care Med 2002;30(1):195–201. doi:10.1097/00003246-200201000-00028

58. Borges T, Wieten L, van Herwijnen M et al. The antiinflammatory mechanisms of Hsp70. Front Immunol 2012; 3:95. doi:10.3389/fimmu.2012.00095

59. Samborski P, Grzymisławski M. The role of HSP70 heat shock proteins in the pathogenesis and treatment of inflammatory bowel diseases. Adv Clin Exp Med 2015;24:525–530. doi:10.17219/acem/44144

60. Maciel R, Cunha R, Busato V et al. Uremia Impacts VECadherin and ZO-1 Expression in Human Endothelial Cell-to-Cell Junctions. Toxins (Basel) 2018;10(10):404. doi:10.3390/toxins10100404

61. Contreras-Velázquez J, Soto V, Jaramillo-Rodríguez Y et al. Clinical outcomes and peritoneal histology in patients starting peritoneal dialysis are related to diabetic status and serum albumin levels. Kidney Int Suppl 2008;(108):S34–41. doi:10.1038/sj.ki.5002599

62. Combet S, Ferrier M, Landschoot M et al. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J Am Soc Nephrol 2001;12(10):2146–2157. doi:10.1681/ASN.V12102146

63. Retana C, Sanchez E, Perez-Lopez A et al. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid. Perit Dial Int 2015;35(3):275–287. doi:10.3747/pdi.2012.00323

64. McIntyre C, Harrison L, Eldehni M et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol 2011;6(1):133–141. doi:10.2215/CJN.04610510

65. Khanna A, Rossman J, Fung H, Caty M. Intestinal and hemodynamic impairment following mesenteric ischemia/reperfusion. J Surg Res 2001;99(1):114–119. doi:10.1006/jsre.2001.6103

66. Stewart A, Pratt-Phillips S, Gonzalez L. Alterations in Intestinal Permeability: The Role of the "Leaky Gut" in Health and Disease. J Equine Vet Sci 2017;52:10–22. doi:10.1016/j.jevs.2017.02.009

67. Wu T, Lim P, Jin J et al. Impaired Gut Epithelial Tight Junction Expression in Hemodialysis Patients Complicated with Intradialytic Hypotension. Biomed Res Int 2018;2018:2670312. doi:10.1155/2018/2670312

68. Gerson L. The presence of hemodialysis has been associated with GI hemorrhage, likely owing to intermittent usage of heparin for dialysis treatments and the presence of uremia-induced platelet dysfunction. Am J Med 1985;79: 552–559

69. Jefferies H, Crowley L, Harrison L et al. Circulating endotoxaemia and frequent haemodialysis schedules. Nephron Clin Pract 2014;128(1-2):141–146. doi:10.1159/000366519

70. Freire E, Albuquerque J, Leal I et al. Effect of chronic renal dysfunction on the permeability of the colon to water and electrolytes: experimental study in rats. Arq Bras Cir Dig 2019;32(4):e1472. doi:10.1590/0102-672020190001e1472

71. Rola F, Dos-Santos A, Xavier-Neto J et al. Effects of acute volemic changes on jejunal compliance in dogs. Braz J Med Biol Res 1989;22(4):523–531. PMID: 2590735.

72. Graça J, Leal P, Gondim F et al. Variations in gastric compliance induced by acute blood volume changes in anesthetized rats. Braz J Med Biol Res 2002;35(3):405–410. doi:10.1590/s0100-879x2002000300018

73. Andersen K, Kesper M, Marschner J et al. Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflammation. J Am Soc Nephrol 2017;28(1):76–83. doi:10.1681/ASN.2015111285

74. Meijers B, Farré R, Dejongh S et al. Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel) 2018;10(7):298. doi:10.3390/toxins10070298

75. Nagura M, Tamura Y, Kumagai T et al. Uric acid metabolism of kidney and intestine in a rat model of chronic kidney disease. Nucleosides Nucleotides Nucleic Acids 2016;35(10-12):550–558. doi:10.1080/15257770.2016.1163379

76. Shinozaki Y, Furuichi K, Toyama T et al. Impairment of the carnitine/organic cation transporter 1-ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int 2017;92(6):1356–1369. doi:10.1016/j.kint.2017.04.032

77. Masereeuw R, Mutsaers H, Toyohara T et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol 2014;34(2):191–208. doi:10.1016/j.semnephrol.2014.02.010

78. Liu B, Luo F, Luo X et al. Metabolic Enzyme System and Transport Pathways in Chronic Kidney Diseases. Curr Drug Metab 2018;19(7):568–576. doi:10.2174/1389200219666180103143448

79. Smirnov AV, Rumyantsev AS. Acute kidney disease. Part I. Nephrology (Saint-Petersburg) 2020;24(1):67–95 (In Russ.). doi:10.36485/1561-6274-2020-24-1-67-95

80. Smirnov AV, Rumyantsev AS. Acute kidney disease. Part II. Nephrology (Saint-Petersburg) 2020;24(2):96–128 (In Russ.). doi:10.36485/1561-6274-2020-24-2-96-128

81. Kobayashi T, Iwata Y, Nakade Y, Wada T. Significance of the Gut Microbiota in Acute Kidney Injury. Toxins 2021;13(6):369. doi:10.3390/toxins13060369

82. Rydzewska-Rosołowska A, Sroka N, Kakareko K et al. The Links between Microbiome and Uremic Toxins in Acute Kidney Injury: Beyond Gut Feeling-A Systematic Review. Toxins 2020;12(12):788. doi:10.3390/toxins12120788

83. Park S, Chen S, Kim M et al. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab Invest 2011;91:63–84. doi:10.1038/labinvest.2010.151

84. Yang J, Kim C, Go Y et al. Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int 2020;98(4):932–946. doi:10.1016/j.kint.2020.04.048

85. Vaziri N, Liu S, Lau W et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PloS one 2014;9(12):e114881. doi:10.1371/journal.pone.0114881

86. Sirich T, Plummer N, Gardner C et al. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. CJASN 2014;9(9):1603–1610. doi:10.2215/CJN.00490114

87. Krishnamurthy V, Wei G, Baird B et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney international 2012;81(3):300–306. doi:10.1038/ki.2011.355

88. Evenepoel P, Bammens B, Verbeke K, Vanrenterghem Y. Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study. Kidney international 2006;70(1):192–198. doi:10.1038/sj.ki.5001523

89. Lukichev BG, Rumyantsev AS, Panina IYu, Akimenko V. Colonic microbiota and chronic kidney disease. Part II. Nephrology (SaintPetersburg) 2019;23(1):18–31 (In Russ.). doi:10.24884/1561-6274-2018-23-1-18-31

90. Meijers B, De Preter V, Verbeke K et al. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrology, dialysis, transplantation 2010;25(1):219–224. doi:10.1093/ndt/gfp414

91. Sueyoshi M, Fukunaga M, Mei M et al. Effects of lactulose on renal function and gut microbiota in adenine-induced chronic kidney disease rats. Clinical and experimental nephrology 2019;23(7):908–919. doi:10.1007/s10157-019-01727-4

92. Miyoshi M, Shiroto A, Kadoguchi H et al. Prebiotics Improved the Defecation Status via Changes in the Microbiota and Short-chain Fatty Acids in Hemodialysis Patients. Kobe J Med Sci 2020;66(1):E12–E21. PMID:32814753

93. Ramos C, Armani R, Canziani M et al. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant 2019;34(11):1876–1884. doi:10.1093/ndt/gfy171

94. Ranganathan N, Ranganathan P, Friedman E et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Advances in therapy 2010;27(9):634–647. doi:10.1007/s12325-010-0059-9

95. Natarajan R, Pechenyak B, Vyas U et al. Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int 2014;2014:568571. doi:10.1155/2014/568571

96. Taki K, Takayama F, Niwa T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. Journal of renal nutrition 2005;15(1):77–80. doi:10.1053/j.jrn.2004.09.028

97. Guida B, Germanò R, Trio R et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. NMCD 2014;24(9):1043–1049. doi:10.1016/j.numecd.2014.04.007

98. Rossi M, Johnson D, Morrison M et al. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. CJASN 2016;11(2):223–231. doi:10.2215/CJN.05240515

99. Cosola C, Rocchetti M, di Bari I et al. An Innovative Synbiotic Formulation Decreases Free Serum Indoxyl Sulfate, Small Intestine Permeability and Ameliorates Gastrointestinal Symptoms in a Randomized Pilot Trial in Stage IIIb-IV CKD Patients. Toxins (Basel) 2021;13(5):334. doi:10.3390/toxins13050334

100. Marzocco S, Fazeli G, Di Micco L et al. Supplementation of Short-Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Pilot Study (PLAN Study). J Clin Med 2018;7(10):315. doi:10.3390/jcm7100315

101. Miao W, Wu X, Wang K et al. Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2. Int J Mol Sci 2016;17(10):1696. doi:10.3390/ijms17101696

102. Andrade-Oliveira V, Amano M, Correa-Costa M et al. Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol 2015;26(8):1877–1888. doi:10.1681/ASN.2014030288

103. Ji C, Deng Y, Yang A et al. Improved Colon Mucosal Barrier Injury in 5/6 Nephrectomy Rats May Associate With Gut Microbiota Modification. Front Pharmacol 2020;11:1092. doi:10.3389/fphar.2020.01092

104. Zeng Y, Dai Z, Lu F et al. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease. Oncotarget 2016;7(14):17468–17478. doi:10.18632/oncotarget.8160

105. Mishima E, Fukuda S, Shima H et al. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD. J Am Soc Nephrol 2015;26(8):1787–1794. doi:10.1681/ASN.2014060530

106. Schulman G, Agarwal R, Acharya M et al. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am J Kidney Dis 2006;47(4):565–577. doi:10.1053/j.ajkd.2005.12.036

107. Niwa T, Ise M, Miyazaki T, Meada K. Suppressive effect of an oral sorbent on the accumulation of p-cresol in the serum of experimental uremic rats. Nephron 1993;65(1):82–87. doi:10.1159/000187446

108. Yamagishi S, Nakamura K, Matsui T et al. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses 2007;69(3):666–668. doi:10.1016/j.mehy.2006.12.045

109. Vaziri N, Yuan J, Khazaeli M et al. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney diseaseinduced intestinal epithelial barrier disruption. Am J Nephrol 2013;37(6):518–525. doi:10.1159/000351171

110. Chen Y, Wu M, Hu P et al. Effects and Safety of an Oral Adsorbent on Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis. Journal of clinical medicine 2019;8(10):1718. doi:10.3390/jcm8101718

111. Perianayagam M, Jaber B. Endotoxin-binding affinity of sevelamer hydrochloride. Am J Nephrol 2008;28(5):802–807. doi:10.1159/000135691

112. Navarro-González J, Mora-Fernández C, Muros de Fuentes M et al. Effect of phosphate binders on serum inflammatory profile, soluble CD14, and endotoxin levels in hemodialysis patients. Clin J Am Soc Nephrol 2011;6(9):2272–2279. doi:10.2215/CJN.01650211

113. Luo F, Patel K, Marquez I et al. Effect of increasing dialyzer mass transfer area coefficient and dialysate flow on clearance of protein-bound solutes: a pilot crossover trial. American journal of kidney diseases 2009;53(6):1042–1049. doi:10.1053/j.ajkd.2009.01.265

114. Meyer T, Peattie J, Miller J et al. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate. JASN 2007;18(3):868–874. doi:10.1681/ASN.2006080863

115. Vanholder R, Meert N, Van Biesen W et al. Why do patients on peritoneal dialysis have low blood levels of protein-bound solutes?. Nature clinical practice. Nephrology 2009;5(3):130–131. doi:10.1038/ncpneph1023


Review

For citations:


Pyatchenkov M.O., Rumyantsev A.S., Sherbakov E.V., Markov A.G. STRUCTURAL AND FUNCTIONAL INTESTINAL BARRIER ABNORMALITIES AND CHRONIC KIDNEY DISEASE. LITERATURE REVIEW. PART II. Nephrology (Saint-Petersburg). 2022;26(2):46-64. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-2-46-64

Views: 440


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)