Features of Damage to Vital Organs Due to SARS-CoV-2 Infection
https://doi.org/10.36485/1561-6274-2022-26-4-9-17
Abstract
SARS-CoV-2 infection continues to be relevant for healthcare systems because it is widespread and characterized by systemic lesions. Complications of the disease primarily affect the respiratory, cardiovascular and urinary systems. In severe cases, secondary infection may join and acute distress syndrome may develop. The most formidable complication, with a high frequency leading to the death of patients, is multiple organ failure. Undoubtedly, the presence of concomitant pathology in the patient has a negative impact on the course of COVID-19 and affects the prognosis of the disease, which requires special attention in clinical practice for their detection and rapid response in order to optimize therapy. The spectrum of complications is very wide. From the cardiovascular system, these are myocarditis, acute myocardial infarction, thromboembolic events. Acute kidney injury and/or worsening of the course of chronic kidney disease also often develops. This review examines several issues related to the defeat of vital organs, various clinical variants of the course of the disease. Particular attention is paid to the damage of the kidneys and cardiovascular system, as the most vulnerable systems for the SARS-CoV-2 virus.
About the Authors
Y. V. LavrischevaRussian Federation
Lavrischeva Yulia V., MD, PhD, senior researcher
Research laboratory of pathogenesis and therapy of arterial hypertension
197341
str. Akkuratova 2
St-Petersburg
tel.: 8(812)7023749
A. O. Konradi
Russian Federation
Konradi Alexandra O., professorMD, DMedSci, Corresponding Member RAS, deputy general director for research
197341
str. Akkuratova 2
St-Petersburg
tel.: 8(812)7023733
A. A. Jakovenko
Russian Federation
Jakovenko Alexandr A., associate professor, MD, PhD
Department of Nephrology and Dialysis of the Faculty of Postgraduate Education Propudeutics of Internal Diseases
197022
L. Tolstoy st., 17, build 54
St-Petersburg
tel.: 8(952)3625464
References
1. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 2020;323(18):1824–1836. doi: 10.1001/jama.2020.6019
2. World Health Organization. Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. Weekly Epidemiological and Operational updates October 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
3. Liu W, Zhang Q, Chen J et al. Detection of Covid-19 in children in early January 2020 in Wuhan, China. N Engl J Med 2020;382(14):1370–1371. doi: 10.1056/NEJMc2003717
4. Shekerdemian LS, Mahmood NR, Wolfe KK et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr 2020;174(9):868–873. doi: 10.1001/jamapediatrics.2020.1948
5. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
6. Feng L, Yin Y-Y, Liu C-H et al. Proteomewide data analysis reveals tissue-specific network associated with SARS-CoV-2 infection. J Mol Cell Biol 2020;12(12):946–957. doi: 10.1093/jmcb/mjaa033
7. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052
8. Zou X, Chen K, Zou J et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14(2):185–192. doi: 10.1007/s11684-020-0754-0
9. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020;526(1):135–140. doi: 10.1016/j.bbrc.2020.03.044
10. Hussain M, Jabeen N, Raza F et al. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol 2020;92(9):1580–1586. doi: 10.1002/jmv.25832
11. Liang W, Feng Z, Rao S et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut 2020;69(6):1141– 1143. doi: 10.1136/gutjnl-2020-320832
12. Gardner JP, Durso RJ, Arrigale RR et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci USA 2003;100(8):4498–4503. doi: 10.1073/pnas.0831128100
13. Wrapp D, Wang N, Corbett KS et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260–1263. doi: 10.1126/science.abb2507
14. Xia S, Zhu Y, Liu M, Lan Q et al. Fusion mechanism of 2019- nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020;17(70:765–767. doi: 10.1038/s41423-020-0374-2
15. Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. JAMA 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585
16. Guan W-J, Ni Z-Y, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032
17. Munster VJ, Koopmans M, van Doremalen N et al. A novel coronavirus emerging in China – key questions for impact assessment. N Engl J Med 2020;382(8):692–694. doi: 10.1056/NEJMp2000929
18. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648
19. Pan XW, Xu D, Zhang H et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med 2020;46(6):1114–1116. doi: 10.1007/s00134-020-06026-1
20. Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol 2020;52(6):1193–1194. doi: 10.1007/s11255-020-02451-9
21. Naicker S, Yang CW, Hwang SJ et al. The novel coronavirus 2019 epidemic and kidneys. Kidney Int 2020;97(5):824–828. doi: 10.1016/j.kint.2020.03.001
22. Braun F, Lütgehetmann M, Pfefferle S et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet 2020;396(10251):597–598. doi: 10.1016/S0140-6736(20)31759-1
23. Cheng Y, Luo R, Wang K et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020;97(5):829–838. doi: 10.1016/j.kint.2020.03.005
24. Su H, Yang M, Wan C, Yi L-X, Tang F, Zhu H-Y et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020;98(1):219–227. doi: 10.1016/j.kint.2020.04.003
25. Gabarre P, Dumas G, Dupont T et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med 2020;46(7):1339–1348. doi: 10.1007/s00134-020-06153-9
26. Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis 2016;49:129–133. doi: 10.1016/j.ijid.2016.06.015
27. Li B, Yang J, Zhao F, Zhi L et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020;109(5):531–538. doi: 10.1007/s00392-020-01626-9
28. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3
29. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis 2020;63(3):390–391. doi: 10.1016/j.pcad.2020.03.001
30. Yang H, Yang LC, Zhang RT et al. Risks factors for death among COVID-19 patients combined with hypertension, coronary heart disease or diabetes. Beijing Da Xue Xue Bao 2020;52(3):420– 424. doi: 10.19723/j.issn.1671-167X.2020.03.004
31. Li JW, Han TW, Woodward M et al. The impact of 2019 novel coronavirus on heart injury: a systematic review and meta-analysis. Prog Cardiovasc Dis 2020;63(4):518–524. doi: 10.1016/j.pcad.2020.04.008
32. Lo IL, Lio CF, Cheong HH et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci 2020; 16(10):1698– 1707. doi: 10.7150/ijbs.45357
33. Fan BE, Chong VCL, Chan SSW et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020; 95(6):E131–E134. doi: 10.1002/ajh.25774
34. Zhang JJY, Lee KS, Ang LW et al. Risk factors of severe dis- ease and efficacy of treatment in patients infected with COVID-19: a systematic review, meta-analysis and meta-regression analysis. Clin Infect Dis 2020;71(16):2199–2206. doi: 10.1093/cid/ciaa576
35. Tavazzi G, Pellegrini C, Maurelli M et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020;22(5):911–915. doi: 10.1002/ejhf.1828
36. Herold S, Becker C, Ridge KM, Budinger GRS. Influenza virusinduced lung injury: pathogenesis and implications for treatment. Eur Respir J 2015;45(5):1463–1478. doi: 10.1183/09031936.00186214
37. Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015;309(11):L1229–L1238. doi: 10.1152/ajplung.00319.2015
38. Wendisch D, Dietrich O, Mari T et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 2021;184(26):6243–6261.e27. doi: 10.1016/j.cell.2021.11.033
39. Rotzinger DC, Beigelman-Aubry C, von Garnier C, Qanadli SD. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. Thromb Res 2020;190:58– 59. doi: 10.1016/j.thromres.2020.04.011
40. Grillet F, Behr J, Calame P et al. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiology 2020;296(3):E186–E188. doi: 10.1148/radiol.2020201544
41. Chu H, Chan JF-W, Wang Y, Yuen TT-T, Chai Y, Hou Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020;71(6):1400– 1409. doi: 10.1093/cid/ciaa410
42. Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I et al. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J Neurosci 2018;38(12):3060–3080. doi: 10.1523/JNEU-ROSCI.1740-17.2018
43. Gautier J-F, Ravussin Y. A new symptom of COVID-19: loss of taste and smell. Obesity (Silver Spring) 2020;28(5):848. doi: 10.1002/oby.22809
44. Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 2004;113(1 Pt 1):e73–76. doi: 10.1542/peds.113.1.e73
45. Wu Y, Xu X, Chen Z et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031
46. Gu J, Gong E, Zhang B et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005;202(3):415–424. doi: 10.1084/jem.20050828
47. Holshue ML, DeBolt C, Lindquist S et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
48. Tang A, Tong Z-D, Wang H-L, Dai Y-X, Li K-F, Liu J-N, et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis 2020;26(6):1337–1339. doi: 10.3201/eid2606.200301
49. Zhang JJ, Dong X, Cao YY et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020;75(7):1730–1741. doi: 10.1111/all.14238
50. Lu X, Zhang L, Du H et al. SARS-CoV-2 infection in children. N Engl J Med 2020;382(17):1663–1665. doi: 10.1056/NEJMc2005073
51. Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol 2020;35(5):744–748. doi: 10.1111/jgh.15047
52. Feng G, Zheng KI, Yan QQ et al. COVID-19 and liver dysfunction: current insights and emergent therapeutic strategies. J Clin Transl Hepatol 2020;8(1):18–24. doi: 10.14218/JCTH.2020.00018
53. Xu L, Liu J, Lu M et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020;40(5):998–1004. doi: 10.1111/liv.14435
54. Wang Y, Liu S, Liu H et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 2020;73(4):807–816. doi: 10.1016/j.jhep.2020.05.002
55. Cai Q, Huang D, Yu H et al. COVID-19: abnormal liver function tests. J Hepatol 2020;73(3):566–574. doi: 10.1016/j.jhep.2020.04.006
Review
For citations:
Lavrischeva Y.V., Konradi A.O., Jakovenko A.A. Features of Damage to Vital Organs Due to SARS-CoV-2 Infection. Nephrology (Saint-Petersburg). 2022;26(4):9-17. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-4-9-17