Preview

Нефрология

Расширенный поиск

Нужны ли пробиотики в нефрологии?

https://doi.org/10.36485/1561-6274-2022-26-4-18-30

Аннотация

Нарушения взаимодействия между хозяином и микробиотой патофизиологически значимы у пациентов с хронической болезнью почек (ХБП). При этом эффект является двунаправленным: с одной стороны, уремия влияет как на состав, так и на метаболизм микробиоты кишечника, а с другой стороны – уремические токсины возникают и удаляются в результате микробного метаболизма. Поэтому пробиотические препараты могут быть эффективным инструментом коррекции. Известны три позитивных механизма влияния пробиотиков: элиминация уремических удерживающих растворенных веществ (УУРВ), при которой происходит снижение превращения аминокислот в н-оксид триметиламина, п-крезилсульфат или индоксилсульфат; увеличение содержания в плазме крови короткоцепочечных жирных кислот; усиление гидролиза мочевины. ХБП является одним из частых осложнений сахарного диабета. Однако при этом заболевании не каждый способ введения пробиотиков может быть эффективным. Так, существенного влияния не наблюдалось при применении пробиотического йогурта. Многообещающие результаты даёт применение капсулированных пробиотиков: метаболические профили в 11 из 24 биомаркеров были положительными. Пробиотикотерапия может успешно применяться при заместительной почечной терапии.

Об авторах

А. Б. Кузнецова
Академия биологии и биотехнологии им. Д.И. Ивановского, Южный федеральный университет
Россия

Кузнецова Анастасия Борисовна 

кафедра генетики

344090

пр. Стачки, д. 194/1

г. Ростов-на-Дону

тел.: +79508466585



Е. В. Празднова
Академия биологии и биотехнологии им. Д.И. Ивановского, Южный федеральный университет
Россия

Празднова Евгения Валерьевна, д-р биол. наук

лаборатория экспериментального мутагенеза

344090

пр. Стачки, д. 194/1

г. Ростов-на-Дону

тел.: +79085119497



В. А. Чистяков
Академия биологии и биотехнологии им. Д.И. Ивановского, Южный федеральный университет
Россия

Чистяков Владимир Анатольевич, д-р биол. наук

лаборатория новых биопрепаратов

344090

пр. Стачки, д. 194/1

г. Ростов-на-Дону



О. Ю. Куцевалова
Национальный медицинский исследовательский центр онкологии
Россия

Куцевалова Ольга Юрьевна

лаборатория клинической микробиологии

тел.: 89054530215



М. М. Батюшин
Ростовский государственный медицинский университет
Россия

Батюшин Михаил Михайлович

кафедра внутренних болезней №2

344022

пер. Нахичеванский, д. 29

г. Ростов-на-Дону

тел.: +78632014423



Список литературы

1. Sathyabama S, Vijayabharathi R, Palanisamy B et al. Screening for probiotic properties of strains isolated from feces of various human groups. Journal of microbiology (Seoul, Korea) 2012;50:603–612. doi: 10.1007/s12275-012-2045-1

2. Lee E-S, Song E-J, Nam Y-D, Lee S-Y. Probiotics in human health and disease: from nutribiotics to pharmabiotics. Journal of microbiology (Seoul, Korea) 2018;56(11):773–782. doi: 10.1007/s12275-018-8293-y

3. Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Frontiers in Nutrition 2020;7:135. doi: 10.3389/fnut.2020.00135

4. Losurdo G, Cubisino R, Barone M et al. Probiotic monotherapy and Helicobacter pylori eradication: A systematic review with pooled-data analysis. World J Gastroenterol 2018;24(1):139–149. doi: 10.3748/wjg.v24.i1.139

5. Marietta E, Mangalam AK, Taneja V, Murray JA. Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Front Immunol 2020;11:573079. doi: 10.3389/fimmu.2020.573079

6. Cryan JF, O'Riordan KJ, Cowan CSM et al. The Microbiota Gut-Brain Axis. Physiol Rev 2019;99(4):1877–2013. doi: 10.1152/physrev.00018.2018

7. Berthoud H-R. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 2008;20 Suppl 1(0 1):64–72. doi: 10.1111/j.1365-2982.2008.01104.x

8. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 2004;55(1 Pt 2):137–154

9. Taché Y, Vale W, Rivier J, Brown M. Brain regulation of gastric secretion: influence of neuropeptides. Proc Natl Acad Sci U S A 1980;77(9):5515–5519. doi: 10.1073/pnas.77.9.5515

10. Bernstein CN. The Brain-Gut Axis and Stress in Inflammatory Bowel Disease. Gastroenterol Clin North Am 2017;46(4):839–846. doi: 10.1016/j.gtc.2017.08.006

11. Petrella C, Farioli-Vecchioli S, Cisale GY et al. A Healthy Gut for a Healthy Brain: Preclinical, Clinical and Regulatory Aspects. Curr Neuropharmacol 2021;19(5):610–628. doi: 10.2174/1570159X18666200730111528

12. Muller PA, Matheis F, Schneeberger M et al. Microbiotamodulated CART(+) enteric neurons autonomously regulate blood glucose. Science 2020;370(6514):314–321. doi: 10.1126/science.abd6176

13. Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011;108(7):3047–3052. doi: 10.1073/pnas.1010529108

14. Abdellatif B, McVeigh C, Bendriss G, Chaari A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. Int J Mol Sci 2020;21(11). doi: 10.3390/ijms21114159

15. Ton AMM, Campagnaro BP, Alves GA, et al. Oxidative Stress and Dementia in Alzheimer's Patients: Effects of Synbiotic Supplementation. Oxid Med Cell Longev 2020;2020:2638703. doi: 10.1155/2020/2638703

16. Cogliati S, Clementi V, Francisco M et al. Bacillus Subtilis Delays Neurodegeneration and Behavioral Impairment in the Alzheimer's Disease Model Caenorhabditis Elegans. J Alzheimers Dis 2020;73(3):1035–1052. doi: 10.3233/JAD-190837

17. Abdelli LS, Samsam A, Naser SA. Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/ AKT Pathway in Autism Spectrum Disorder. Scientific Reports 2019;9(1):8824. doi: 10.1038/s41598-019-45348-z

18. Liang L, Zhou H, Zhang S et al. Effects of gut microbiota disturbance induced in early life on the expression of extrasynaptic GABA-A receptor α5 and δ subunits in the hippocampus of adult rats. Brain Res Bull 2017;135:113–119. doi: 10.1016/j.brainresbull.2017.09.014

19. Tian P, O'Riordan KJ, Lee Y-K et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 2020;12:100216. doi: 10.1016/j.ynstr.2020.100216

20. Zalar B, Haslberger A, Peterlin B. The Role of Microbiota in Depression – a brief review. Psychiatr Danub. 2018;30(2):136–141. doi: 10.24869/psyd.2018.136

21. Grover S, Patil A, Kaur A, Garg G. Probiotics: A Potential Immunotherapeutic Approach for the Treatment of Schizophrenia. J Pharm Bioallied Sci 2019;11(4):321–327. doi: 10.4103/jpbs.JPBS_47_19

22. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int 2015;88(5):958–966. doi: 10.1038/ki.2015.255

23. Lopes, Rita de Cássia Stampini Oliveira, Balbino KP et al. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: a systematic review. Nutr Hosp 2018;35(3):722–730. doi: 10.20960/nh.1642

24. Tsai Y-L, Lin T-L, Chang C-J et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 2019;26(1):3. doi: 10.1186/s12929-018-0493-6

25. Jia L, Jia Q, Yang J et al. Efficacy of Probiotics Supplementation On Chronic Kidney Disease: a Systematic Review and Meta-Analysis. Kidney Blood Press Res 2018;43(5):1623–1635. doi: 10.1159/000494677

26. Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol Nefrol 2016;68(2):222–226

27. Cavalcanti Neto MP, Aquino JdS, Romão da Silva et al. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol Res 2018;130:152–163. doi: 10.1016/j.phrs.2018.01.020

28. Rukavina Mikusic NL, Kouyoumdzian NM, Choi MR. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinalrenal axis. Pflugers Arch 2020;472(3):303–320. doi: 10.1007/s00424-020-02352-x

29. Liu S, Liu H, Chen L et al. Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial. Eur J Nutr 2020;59(8):3755–3766. doi: 10.1007/s00394-020-02207-2

30. Fagundes RAB, Soder TF, Grokoski KC et al. Probiotics in the treatment of chronic kidney disease: a systematic review. J Bras Nefrol 2018;40(3):278–286. doi: 10.1590/2175-8239-jbn-3931

31. Borges NA, Carmo FL, Stockler-Pinto MB, et al. Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. J Ren Nutr 2018;28(1):28–36. doi: 10.1053/j.jrn.2017.06.010

32. Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM et al. Inflammation in Renal Diseases: New and Old Players. Front Pharmacol 2019;10:1192. doi: 10.3389/fphar.2019.01192

33. Sabatino A, Regolisti G, Cosola C, et al. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr Diab Rep 2017;17(3):16. doi: 10.1007/s11892-017-0841-z

34. Береснева ОН, Парастаева ММ, Кучер АГ и др. Влияние содержания белка в диете на прогрессирование экспериментальной хронической почечной недостаточности. Нефрология 2003;7(4):66–70. https://doi.org/10.24884/1561-6274-2003-7-4-66-70

35. Xiao J, Peng Z, Liao Y et al. Organ transplantation and gut microbiota: current reviews and future challenges. Am J Transl Res 2018;10(11):3330–3344

36. Лукичев БГ, Румянцев AШ, Панина ИЮ, Акименко В. Микробиота кишечника и хроническая болезнь почек. Сообщение второе. Нефрология 2019;23(1):18–31. https://doi.org/10.24884/1561-6274-2018-23-1-18-31

37. Макарова ОВ, Румянцев АШ, Шило ВЮ. Пилотное исследование кишечной микробиоты у больных на гемодиализе. Нефрология и диализ 2018;20(4): 452. doi: 10.28996/2618-9801-2018-4-416-467

38. Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol 2017;32(11):2005–2014. doi: 10.1007/s00467-016-3527-x

39. Ticinesi A, Nouvenne A, Chiussi G, et al. Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020;12(2). doi: 10.3390/nu12020548

40. Ticinesi A, Nouvenne A, Meschi T. Gut microbiome and kidney stone disease: not just an Oxalobacter story. Kidney Int 2019;96(1):25–27. doi: 10.1016/j.kint.2019.03.020

41. Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog 2017;109:287–291. doi: 10.1016/j.micpath.2017.06.009

42. Pak CYC, Sakhaee K, Moe OW et al. Defining hypercalciuria in nephrolithiasis. Kidney Int 2011;80(7):777–782. doi: 10.1038/ki.2011.227

43. Robijn S, Hoppe B, Vervaet BA et al. Hyperoxaluria: a gut-kidney axis? Kidney Int 2011;80(11):1146–1158. doi: 10.1038/ki.2011.287

44. Whittamore JM, Hatch M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2017;45(1):89–108. doi: 10.1007/s00240-016-0952-z

45. Suryavanshi MV, Bhute SS, Jadhav SD et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific Reports 2016;6:34712. doi: 10.1038/srep34712

46. Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int 2006;70(11):1929–1934. doi: 10.1038/sj.ki.5001906

47. Miller AW, Kohl KD, Dearing MD. The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 2014;80(5):1595–1601. doi: 10.1128/AEM.03742-13

48. Miller AW, Oakeson KF, Dale C, Dearing MD. Effect of Dietary Oxalate on the Gut Microbiota of the Mammalian Herbivore Neotoma albigula. Appl Environ Microbiol 2016;82(9):2669–2675. doi: 10.1128/AEM.00216-16

49. Miller AW, Dale C, Dearing MD. Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore Neotoma albigula. mSphere 2017;2(5). doi: 10.1128/mSphere.00428-17

50. Sorensen MD, Hsi RS, Chi T et al. Dietary intake of fiber, fruit and vegetables decreases the risk of incident kidney stones in women: a Women's Health Initiative report. J Urol 2014;192(6):1694–1699. doi: 10.1016/j.juro.2014.05.086

51. Meschi T, Maggiore U, Fiaccadori E et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int 2004;66(6):2402–2410. doi: 10.1111/j.1523-1755.2004.66029.x

52. Prezioso D, Strazzullo P, Lotti T et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl 2015;87(2):105–120. doi: 10.4081/aiua.2015.2.105

53. Gambaro G, Croppi E, Coe F et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 2016;29(6):715–734. doi: 10.1007/s40620-016-0329-y

54. Grases F, Saez-Torres C, Rodriguez A et al. Urinary phytate (Myo-inositol hexaphosphate) in healthy school children and risk of nephrolithiasis. J Ren Nutr 2014;24(4):219–223. doi: 10.1053/j.jrn.2014.03.004

55. Dai M, Zhao A, Liu A et al. Dietary factors and risk of kidney stone: a case-control study in southern China. J Ren Nutr 2013; 23(2):e21-8. doi: 10.1053/j.jrn.2012.04.003

56. Chung WSF, Walker AW, Louis P et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 2016;14(1):3. doi: 10.1186/s12915-015-0224-3

57. Lin D, Peters BA, Friedlander C et al. Association of dietary fibre intake and gut microbiota in adults. Br J Nutr 2018;120(9):1014–1022. doi: 10.1017/S0007114518002465

58. Tomova A, Bukovsky I, Rembert E et al. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition 2019;6:47. doi: 10.3389/fnut.2019.00047

59. Hiel S, Bindels LB, Pachikian BD et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am J Clin Nutr 2019;109(6):1683–1695. doi: 10.1093/ajcn/nqz001

60. Pallister T, Jackson MA, Martin TC et al. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. Int J Obes (Lond) 2017;41(7):1106–1113. doi: 10.1038/ijo.2017.70

61. Guerra A, Ticinesi A, Allegri F et al. Insights about urinary hippuric and citric acid as biomarkers of fruit and vegetable intake in patients with kidney stones: The role of age and sex. Nutrition 2019;59:83–89. doi: 10.1016/j.nut.2018.07.112

62. Ticinesi A, Nouvenne A, Borghi L, Meschi T. Water and other fluids in nephrolithiasis: State of the art and future challenges. Crit Rev Food Sci Nutr 2017;57(5):963–974. doi: 10.1080/10408398.2014.964355

63. Choi YJ, Lee DH, Kim HS, Kim Y-K. An exploratory study on the effect of daily fruits and vegetable juice on human gut microbiota. Food Sci Biotechnol 2018;27(5):1377–1386. doi: 10.1007/s10068-018-0372-7

64. Lima ACD, Cecatti C, Fidélix MP et al. Effect of Daily Consumption of Orange Juice on the Levels of Blood Glucose, Lipids, and Gut Microbiota Metabolites: Controlled Clinical Trials. J Med Food 2019;22(2):202–210. doi: 10.1089/jmf.2018.0080

65. Brasili E, Hassimotto NMA, Del Chierico F et al. Daily Consumption of Orange Juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia Differently Affects Gut Microbiota Profiling as Unveiled by an Integrated Meta-Omics Approach. J Agric Food Chem 2019;67(5):1381–1391. doi: 10.1021/acs.jafc.8b05408

66. Henning SM, Yang J, Shao P et al. Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Scientific Reports 2017;7(1):2167. doi: 10.1038/s41598-017-02200-6

67. Huang H, Krishnan HB, Pham Q et al. Soy and Gut Microbiota: Interaction and Implication for Human Health. J Agric Food Chem 2016;64(46):8695–8709. doi: 10.1021/acs.jafc.6b03725

68. Cross T-WL, Zidon TM, Welly RJ et al. Soy Improves Cardiometabolic Health and Cecal Microbiota in Female Low-Fit Rats. Scientific Reports 2017;7(1):9261. doi: 10.1038/s41598-017-08965-0

69. Siva N, Johnson CR, Richard V et al. Lentil (Lens culinaris Medikus) Diet Affects the Gut Microbiome and Obesity Markers in Rat. J Agric Food Chem 2018;66(33):8805–8813. doi: 10.1021/acs.jafc.8b03254

70. Vázquez L, Flórez AB, Guadamuro L, Mayo B. Effect of Soy Isoflavones on Growth of Representative Bacterial Species from the Human Gut. Nutrients 2017;9(7). doi: 10.3390/nu9070727

71. Hida M, Aiba Y, Sawamura S, et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996;74(2):349–355. doi: 10.1159/000189334

72. Wang I-K, Lai H-C, Yu C-J et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol 2012;78(4):1107–1112. doi: 10.1128/AEM.05605-11

73. Vaziri ND, Wong J, Pahl M et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013;83(2):308–315. doi: 10.1038/ki.2012.345

74. Yoshifuji A, Wakino S, Irie J et al. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant 2016;31(3):401–412. doi: 10.1093/ndt/gfv353

75. Wong J, Piceno YM, DeSantis TZ et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014;39(3):230–237. doi: 10.1159/000360010

76. Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017;9(3). doi: 10.3390/nu9030208

77. Cigarran Guldris S, González Parra E, Cases Amenós A. Gut microbiota in chronic kidney disease. Nefrologia 2017;37(1):9–19. doi: 10.1016/j.nefro.2016.05.008

78. Kramer H. Diet and Chronic Kidney Disease. Adv Nutr 2019;10(Suppl_4):S367–S379. doi: 10.1093/advances/nmz011

79. Anders H-J, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 2013;83(6):1010–1016. doi: 10.1038/ki.2012.440

80. Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 2012;21(6):587–592. doi: 10.1097/MNH.0b013e328358c8d5

81. Glorieux G, Gryp T, Perna A. Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins (Basel) 2020;12(4). doi: 10.3390/toxins12040245

82. Poesen R, Ramezani A, Claes K et al. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clinical Journal of the American Society of Nephrology 2015;10(9):1525–1533. doi: 10.2215/CJN.03100315

83. Li F, Wang M, Wang J et al. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease. Front Cell Infect Microbiol 2019;9:206. doi: 10.3389/ fcimb.2019.00206

84. Kanbay M, Onal EM, Afsar B et al. The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 2018;50(8):1453–1466. doi: 10.1007/s11255-018-1873-2

85. Bosi E, Molteni L, Radaelli MG et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006;49(12):2824–2827. doi: 10.1007/s00125-006-0465-3

86. Cani PD, Possemiers S, van de Wiele T et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58(8):1091–1103. doi: 10.1136/gut.2008.165886

87. Pushpanathan P, Srikanth P, Seshadri KG, et al. Gut Microbiota in Type 2 Diabetes Individuals and Correlation with Monocyte Chemoattractant Protein1 and Interferon Gamma from Patients Attending a Tertiary Care Centre in Chennai, India. Indian J Endocrinol Metab 2016;20(4):523–530. doi: 10.4103/2230-8210.183474

88. Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010;298(6):G807–819. doi: 10.1152/ajpgi.00243.2009

89. Prokopienko AJ, Nolin TD. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev Clin Pharmacol 2018;11(1):71–82. doi: 10.1080/17512433.2018.1378095

90. Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56(7):1761–1772. doi: 10.2337/db06-1491

91. Nymark M, Pussinen PJ, Tuomainen AM et al. Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes. Diabetes Care 2009;32(9):1689–1693. doi: 10.2337/dc09-0467

92. Tai N, Peng J, Liu F et al. Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. J Exp Med 2016;213(10):2129–2146. doi: 10.1084/jem.20160526

93. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014;25(4):657–670. doi: 10.1681/ASN.2013080905

94. Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clinical Journal of the American Society of Nephrology 2012;7(12):1938–1946. doi: 10.2215/CJN.03500412

95. Andrade-Oliveira V, Amano MT, Correa-Costa M et al. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol 2015;26(8):1877–1888. doi: 10.1681/ASN.2014030288

96. Ranganathan N, Patel BG, Ranganathan P et al. In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 2006;52(1):70–79. doi: 10.1097/01.mat.0000191345.45735.00

97. Prakash S, Chang TM. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 1996;2(8):883–887. doi: 10.1038/nm0896-883

98. Ranganathan N, Ranganathan P, Friedman EA et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 2010;27(9):634–647. doi: 10.1007/s12325-010-0059-9

99. Kirk J, Dunker KS. Dietary counseling: the ingredient for successfully addressing the use of herbal supplements and probiotics in chronic kidney disease. Adv Chronic Kidney Dis 2014;21(4):377–384. doi: 10.1053/j.ackd.2014.05.001

100. Miranda Alatriste PV, Urbina Arronte R, Gómez Espinosa CO et al. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp 2014;29(3):582–590. doi: 10.3305/nh.2014.29.3.7179

101. Zheng HJ, Guo J, Wang Q et al. Probiotics, prebiotics, and synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021;61(4):577–598. doi: 10.1080/10408398.2020.1740645

102. Ogawa T, Shimada M, Nagano N et al. Oral administration of Bifidobacterium longum in a gastro-resistant seamless capsule decreases serum phosphate levels in patients receiving haemodialysis. Clin Kidney J 2012;5(4):373–374. doi: 10.1093/ckj/sfs072

103. Бобкова ИН, Щукина АА, Шестакова МВ. Оценка уровней нефрина и подоцина в моче у больных с сахарным диабетом. Нефрология 2017;21(2):33–40. https://doi.org/10.24884/1561-6274-2017-21-2-33-40

104. Barengolts E, Smith ED, Reutrakul S et al. The Effect of Probiotic Yogurt on Glycemic Control in Type 2 Diabetes or Obesity: A Meta-Analysis of Nine Randomized Controlled Trials. Nutrients 2019;11(3). doi: 10.3390/nu11030671

105. Soleimani A, Zarrati Mojarrad M, Bahmani F et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int 2017;91(2):435–442. doi: 10.1016/j.kint.2016.09.040

106. Sirich TL, Fong K, Larive B et al. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the Frequent Hemodialysis Network Daily Trial. Kidney Int 2017;91(5):1186–1192. doi: 10.1016/j.kint.2016.11.002

107. Takayama F, Taki K, Niwa T. Bifidobacterium in gastroresistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 2003;41(3 Suppl 1):S142-5. doi: 10.1053/ajkd.2003.50104

108. Nakabayashi I, Nakamura M, Kawakami K et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 2011;26(3):1094–1098. doi: 10.1093/ndt/gfq624

109. Simenhoff ML, Dunn SR, Zollner GP et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 1996;22(1–3):92–96

110. Wang I-K, Wu Y-Y, Yang Y-F et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 2015;6(4):423–430. doi: 10.3920/BM2014.0088

111. Toh S-L, Boswell-Ruys CL, Lee BSB et al. Probiotics for preventing urinary tract infection in people with neuropathic bladder. Cochrane Database Syst Rev 2017;9(9):CD010723. doi: 10.1002/14651858.CD010723.pub2

112. Darouiche RO, Thornby JI, Cerra-Stewart C et al. Bacterial interference for prevention of urinary tract infection: a prospective, randomized, placebo-controlled, double-blind pilot trial. Clin Infect Dis 2005;41(10):1531–1534. doi: 10.1086/497272

113. Darouiche RO, Green BG, Donovan WH et al. Multicenter Randomized Controlled Trial of Bacterial Interference for Prevention of Urinary Tract Infection in Patients With Neurogenic Bladder. Urology 2011;78(2):341–346. doi: 10.1016/j.urology.2011.03.062

114. Sundén F, Håkansson L, Ljunggren E, Wullt B. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 2010;184(1):179–185. doi: 10.1016/j.juro.2010.03.024

115. Robinson BM, Akizawa T, Jager KJ et al. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet 2016;388(10041):294–306. doi: 10.1016/S0140-6736(16)30448-2

116. Zununi Vahed S, Ardalan M, Samadi N, Omidi Y. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients. Bioimpacts 2015;5(1):45–54. doi: 10.15171/bi.2015.12

117. Zununi Vahed S, Samadi N, Mostafidi E et al. Genetics and Epigenetics of Chronic Allograft Dysfunction in Kidney Transplants. Iranian journal of kidney diseases 2016;10:1–9

118. Zaza G, Dalla Gassa A, Felis G et al. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS One 2017;12(5):e0178228. doi: 10.1371/journal.pone.0178228

119. Ardalan M, Vahed SZ. Gut microbiota and renal transplant outcome. Biomed Pharmacother 2017;90:229–236. doi: 10.1016/j.biopha.2017.02.114

120. Lee JR, Muthukumar T, Dadhania D et al. Gut microbial community structure and complications after kidney transplantation: a pilot study. Transplantation 2014;98(7):697–705. doi: 10.1097/TP.0000000000000370

121. Lee JR, Muthukumar T, Dadhania D et al. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS One 2015;10(3):e0122399. doi: 10.1371/journal.pone.0122399

122. Zhang J, Ren F-G, Liu P, et al. Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation. World J Gastroenterol 2017;23(46):8217–8226. doi: 10.3748/wjg.v23.i46.8217

123. Смирнов АВ, Каюков ИГ, Есаян АМ, Добронравов ВА, Кучер АГ, Тугушева ФА. Превентивный подход в современной нефрологии. Нефрология 2004;8(3):7–14. https://doi.org/10.24884/1561-6274-2004-8-3-7-14


Рецензия

Для цитирования:


Кузнецова А.Б., Празднова Е.В., Чистяков В.А., Куцевалова О.Ю., Батюшин М.М. Нужны ли пробиотики в нефрологии? Нефрология. 2022;26(4):18-30. https://doi.org/10.36485/1561-6274-2022-26-4-18-30

For citation:


Kuznetzova A.B., Prazdnova E.V., Chistyakov V.A., Kutsevalova O.Yu., Batiushin M.M. Are Probiotics Needed in Nephrology? Nephrology (Saint-Petersburg). 2022;26(4):18-30. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-4-18-30

Просмотров: 1401


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)