Are Probiotics Needed in Nephrology?
https://doi.org/10.36485/1561-6274-2022-26-4-18-30
Abstract
Violations of the interaction between the host and the microbiota are pathophysiologically significant in patients with chronic kidney disease (CKD). At the same time, the effect is bi-directional: on the one hand, uremia affects both the composition and metabolism of the intestinal microbiota, and on the other hand, uremic toxins arise and are removed as a result of microbial metabolism. Therefore, probiotic drugs can be an effective correction tool. There are three known positive mechanisms of the effect of probiotics: elimination of uremic retaining solutes (URVS), in which there is a decrease in the conversion of amino acids into trimethylamine n-oxide, p-cresyl sulfate or indoxyl sulfate; an increase in the content of short-chain fatty acids in blood plasma; increased hydrolysis of urea. CKD is one of the frequent complications of diabetes mellitus. However, with this disease, not every method of administration of probiotics can be effective. Thus, no significant effect was observed when using probiotic yogurt. The use of encapsulated probiotics gives promising results: metabolic profiles in 11 out of 24 biomarkers were positive. Probiotic therapy can be successfully used in renal replacement therapy.
About the Authors
A. B. KuznetzovaRussian Federation
Anastasia Borisovna Kuznetzova
Department of Genetics
344090
Stachki avenue, 194/1
Rostov-on-Don
tel.: +79508466585
E. V. Prazdnova
Russian Federation
Prazdnova Evgeniya Valerievna, Doctor of Biological Sciences
Laboratory of Experimental Mutagenesis
344090
Stachki Avenue, 194/1
Rostov-on-Don
tel.: +79085119497
V. A. Chistyakov
Russian Federation
Chistyakov Vladimir Anatolyevich, Doctor of Biological Sciences
laboratory of new biological products
344090
Stachki Avenue, 194/1
Rostov-on-Don
O. Yu. Kutsevalova
Russian Federation
Olga Yurievna Kutsevalova
Laboratory of Clinical Microbiology
tel.: 89054530215
M. M. Batiushin
Russian Federation
Batiushin Mikhail Mikhailovich
Department of Internal Diseases No. 2
344022
lane. Nakhichevan, 29
Rostov-on-Don
tel.: +78632014423
References
1. Sathyabama S, Vijayabharathi R, Palanisamy B et al. Screening for probiotic properties of strains isolated from feces of various human groups. Journal of microbiology (Seoul, Korea) 2012;50:603–612. doi: 10.1007/s12275-012-2045-1
2. Lee E-S, Song E-J, Nam Y-D, Lee S-Y. Probiotics in human health and disease: from nutribiotics to pharmabiotics. Journal of microbiology (Seoul, Korea) 2018;56(11):773–782. doi: 10.1007/s12275-018-8293-y
3. Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Frontiers in Nutrition 2020;7:135. doi: 10.3389/fnut.2020.00135
4. Losurdo G, Cubisino R, Barone M et al. Probiotic monotherapy and Helicobacter pylori eradication: A systematic review with pooled-data analysis. World J Gastroenterol 2018;24(1):139–149. doi: 10.3748/wjg.v24.i1.139
5. Marietta E, Mangalam AK, Taneja V, Murray JA. Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Front Immunol 2020;11:573079. doi: 10.3389/fimmu.2020.573079
6. Cryan JF, O'Riordan KJ, Cowan CSM et al. The Microbiota Gut-Brain Axis. Physiol Rev 2019;99(4):1877–2013. doi: 10.1152/physrev.00018.2018
7. Berthoud H-R. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil 2008;20 Suppl 1(0 1):64–72. doi: 10.1111/j.1365-2982.2008.01104.x
8. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 2004;55(1 Pt 2):137–154
9. Taché Y, Vale W, Rivier J, Brown M. Brain regulation of gastric secretion: influence of neuropeptides. Proc Natl Acad Sci U S A 1980;77(9):5515–5519. doi: 10.1073/pnas.77.9.5515
10. Bernstein CN. The Brain-Gut Axis and Stress in Inflammatory Bowel Disease. Gastroenterol Clin North Am 2017;46(4):839–846. doi: 10.1016/j.gtc.2017.08.006
11. Petrella C, Farioli-Vecchioli S, Cisale GY et al. A Healthy Gut for a Healthy Brain: Preclinical, Clinical and Regulatory Aspects. Curr Neuropharmacol 2021;19(5):610–628. doi: 10.2174/1570159X18666200730111528
12. Muller PA, Matheis F, Schneeberger M et al. Microbiotamodulated CART(+) enteric neurons autonomously regulate blood glucose. Science 2020;370(6514):314–321. doi: 10.1126/science.abd6176
13. Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011;108(7):3047–3052. doi: 10.1073/pnas.1010529108
14. Abdellatif B, McVeigh C, Bendriss G, Chaari A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. Int J Mol Sci 2020;21(11). doi: 10.3390/ijms21114159
15. Ton AMM, Campagnaro BP, Alves GA, et al. Oxidative Stress and Dementia in Alzheimer's Patients: Effects of Synbiotic Supplementation. Oxid Med Cell Longev 2020;2020:2638703. doi: 10.1155/2020/2638703
16. Cogliati S, Clementi V, Francisco M et al. Bacillus Subtilis Delays Neurodegeneration and Behavioral Impairment in the Alzheimer's Disease Model Caenorhabditis Elegans. J Alzheimers Dis 2020;73(3):1035–1052. doi: 10.3233/JAD-190837
17. Abdelli LS, Samsam A, Naser SA. Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/ AKT Pathway in Autism Spectrum Disorder. Scientific Reports 2019;9(1):8824. doi: 10.1038/s41598-019-45348-z
18. Liang L, Zhou H, Zhang S et al. Effects of gut microbiota disturbance induced in early life on the expression of extrasynaptic GABA-A receptor α5 and δ subunits in the hippocampus of adult rats. Brain Res Bull 2017;135:113–119. doi: 10.1016/j.brainresbull.2017.09.014
19. Tian P, O'Riordan KJ, Lee Y-K et al. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 2020;12:100216. doi: 10.1016/j.ynstr.2020.100216
20. Zalar B, Haslberger A, Peterlin B. The Role of Microbiota in Depression – a brief review. Psychiatr Danub. 2018;30(2):136–141. doi: 10.24869/psyd.2018.136
21. Grover S, Patil A, Kaur A, Garg G. Probiotics: A Potential Immunotherapeutic Approach for the Treatment of Schizophrenia. J Pharm Bioallied Sci 2019;11(4):321–327. doi: 10.4103/jpbs.JPBS_47_19
22. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int 2015;88(5):958–966. doi: 10.1038/ki.2015.255
23. Lopes, Rita de Cássia Stampini Oliveira, Balbino KP et al. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: a systematic review. Nutr Hosp 2018;35(3):722–730. doi: 10.20960/nh.1642
24. Tsai Y-L, Lin T-L, Chang C-J et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 2019;26(1):3. doi: 10.1186/s12929-018-0493-6
25. Jia L, Jia Q, Yang J et al. Efficacy of Probiotics Supplementation On Chronic Kidney Disease: a Systematic Review and Meta-Analysis. Kidney Blood Press Res 2018;43(5):1623–1635. doi: 10.1159/000494677
26. Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol Nefrol 2016;68(2):222–226
27. Cavalcanti Neto MP, Aquino JdS, Romão da Silva et al. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol Res 2018;130:152–163. doi: 10.1016/j.phrs.2018.01.020
28. Rukavina Mikusic NL, Kouyoumdzian NM, Choi MR. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinalrenal axis. Pflugers Arch 2020;472(3):303–320. doi: 10.1007/s00424-020-02352-x
29. Liu S, Liu H, Chen L et al. Effect of probiotics on the intestinal microbiota of hemodialysis patients: a randomized trial. Eur J Nutr 2020;59(8):3755–3766. doi: 10.1007/s00394-020-02207-2
30. Fagundes RAB, Soder TF, Grokoski KC et al. Probiotics in the treatment of chronic kidney disease: a systematic review. J Bras Nefrol 2018;40(3):278–286. doi: 10.1590/2175-8239-jbn-3931
31. Borges NA, Carmo FL, Stockler-Pinto MB, et al. Probiotic Supplementation in Chronic Kidney Disease: A Double-blind, Randomized, Placebo-controlled Trial. J Ren Nutr 2018;28(1):28–36. doi: 10.1053/j.jrn.2017.06.010
32. Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM et al. Inflammation in Renal Diseases: New and Old Players. Front Pharmacol 2019;10:1192. doi: 10.3389/fphar.2019.01192
33. Sabatino A, Regolisti G, Cosola C, et al. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr Diab Rep 2017;17(3):16. doi: 10.1007/s11892-017-0841-z
34. Beresneva ON, Parastaeva MM, Kucher AG et al. Effects of dietary protein on the development of experimental chronic renal failure. Nephrology (Saint-Petersburg) 2003;7(4):66–70. (In Russ.). https://doi.org/10.24884/1561-6274-2003-7-4-66-70
35. Xiao J, Peng Z, Liao Y et al. Organ transplantation and gut microbiota: current reviews and future challenges. Am J Transl Res 2018;10(11):3330–3344
36. Lukichev BG, Rumyantsev AS, Panina IYu, Akimenko V. Colonic microbiota and chronic kidney diseases intestinal microbiota and chronic kidney disease. Part II. Nephrology (Saint-Petersburg) 2019;23(1):18–31 (In Russ.). https://doi.org/10.24884/1561-6274-2018-23-1-18-31
37. Makarova ОV, Rumyantsev ASh, Shilo VA. Pilot study of intestinal microbiota in hemodialysis patients. Nephrology and dialysis 2018;20(4): 452 (In Russ.). doi: 10.28996/2618-9801-2018-4-416-467
38. Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol 2017;32(11):2005–2014. doi: 10.1007/s00467-016-3527-x
39. Ticinesi A, Nouvenne A, Chiussi G, et al. Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020;12(2). doi: 10.3390/nu12020548
40. Ticinesi A, Nouvenne A, Meschi T. Gut microbiome and kidney stone disease: not just an Oxalobacter story. Kidney Int 2019;96(1):25–27. doi: 10.1016/j.kint.2019.03.020
41. Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog 2017;109:287–291. doi: 10.1016/j.micpath.2017.06.009
42. Pak CYC, Sakhaee K, Moe OW et al. Defining hypercalciuria in nephrolithiasis. Kidney Int 2011;80(7):777–782. doi: 10.1038/ki.2011.227
43. Robijn S, Hoppe B, Vervaet BA et al. Hyperoxaluria: a gut-kidney axis? Kidney Int 2011;80(11):1146–1158. doi: 10.1038/ki.2011.287
44. Whittamore JM, Hatch M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2017;45(1):89–108. doi: 10.1007/s00240-016-0952-z
45. Suryavanshi MV, Bhute SS, Jadhav SD et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific Reports 2016;6:34712. doi: 10.1038/srep34712
46. Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int 2006;70(11):1929–1934. doi: 10.1038/sj.ki.5001906
47. Miller AW, Kohl KD, Dearing MD. The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 2014;80(5):1595–1601. doi: 10.1128/AEM.03742-13
48. Miller AW, Oakeson KF, Dale C, Dearing MD. Effect of Dietary Oxalate on the Gut Microbiota of the Mammalian Herbivore Neotoma albigula. Appl Environ Microbiol 2016;82(9):2669–2675. doi: 10.1128/AEM.00216-16
49. Miller AW, Dale C, Dearing MD. Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore Neotoma albigula. mSphere 2017;2(5). doi: 10.1128/mSphere.00428-17
50. Sorensen MD, Hsi RS, Chi T et al. Dietary intake of fiber, fruit and vegetables decreases the risk of incident kidney stones in women: a Women's Health Initiative report. J Urol 2014;192(6):1694–1699. doi: 10.1016/j.juro.2014.05.086
51. Meschi T, Maggiore U, Fiaccadori E et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int 2004;66(6):2402–2410. doi: 10.1111/j.1523-1755.2004.66029.x
52. Prezioso D, Strazzullo P, Lotti T et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl 2015;87(2):105–120. doi: 10.4081/aiua.2015.2.105
53. Gambaro G, Croppi E, Coe F et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 2016;29(6):715–734. doi: 10.1007/s40620-016-0329-y
54. Grases F, Saez-Torres C, Rodriguez A et al. Urinary phytate (Myo-inositol hexaphosphate) in healthy school children and risk of nephrolithiasis. J Ren Nutr 2014;24(4):219–223. doi: 10.1053/j.jrn.2014.03.004
55. Dai M, Zhao A, Liu A et al. Dietary factors and risk of kidney stone: a case-control study in southern China. J Ren Nutr 2013; 23(2):e21-8. doi: 10.1053/j.jrn.2012.04.003
56. Chung WSF, Walker AW, Louis P et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 2016;14(1):3. doi: 10.1186/s12915-015-0224-3
57. Lin D, Peters BA, Friedlander C et al. Association of dietary fibre intake and gut microbiota in adults. Br J Nutr 2018;120(9):1014–1022. doi: 10.1017/S0007114518002465
58. Tomova A, Bukovsky I, Rembert E et al. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition 2019;6:47. doi: 10.3389/fnut.2019.00047
59. Hiel S, Bindels LB, Pachikian BD et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am J Clin Nutr 2019;109(6):1683–1695. doi: 10.1093/ajcn/nqz001
60. Pallister T, Jackson MA, Martin TC et al. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling. Int J Obes (Lond) 2017;41(7):1106–1113. doi: 10.1038/ijo.2017.70
61. Guerra A, Ticinesi A, Allegri F et al. Insights about urinary hippuric and citric acid as biomarkers of fruit and vegetable intake in patients with kidney stones: The role of age and sex. Nutrition 2019;59:83–89. doi: 10.1016/j.nut.2018.07.112
62. Ticinesi A, Nouvenne A, Borghi L, Meschi T. Water and other fluids in nephrolithiasis: State of the art and future challenges. Crit Rev Food Sci Nutr 2017;57(5):963–974. doi: 10.1080/10408398.2014.964355
63. Choi YJ, Lee DH, Kim HS, Kim Y-K. An exploratory study on the effect of daily fruits and vegetable juice on human gut microbiota. Food Sci Biotechnol 2018;27(5):1377–1386. doi: 10.1007/s10068-018-0372-7
64. Lima ACD, Cecatti C, Fidélix MP et al. Effect of Daily Consumption of Orange Juice on the Levels of Blood Glucose, Lipids, and Gut Microbiota Metabolites: Controlled Clinical Trials. J Med Food 2019;22(2):202–210. doi: 10.1089/jmf.2018.0080
65. Brasili E, Hassimotto NMA, Del Chierico F et al. Daily Consumption of Orange Juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia Differently Affects Gut Microbiota Profiling as Unveiled by an Integrated Meta-Omics Approach. J Agric Food Chem 2019;67(5):1381–1391. doi: 10.1021/acs.jafc.8b05408
66. Henning SM, Yang J, Shao P et al. Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Scientific Reports 2017;7(1):2167. doi: 10.1038/s41598-017-02200-6
67. Huang H, Krishnan HB, Pham Q et al. Soy and Gut Microbiota: Interaction and Implication for Human Health. J Agric Food Chem 2016;64(46):8695–8709. doi: 10.1021/acs.jafc.6b03725
68. Cross T-WL, Zidon TM, Welly RJ et al. Soy Improves Cardiometabolic Health and Cecal Microbiota in Female Low-Fit Rats. Scientific Reports 2017;7(1):9261. doi: 10.1038/s41598-017-08965-0
69. Siva N, Johnson CR, Richard V et al. Lentil (Lens culinaris Medikus) Diet Affects the Gut Microbiome and Obesity Markers in Rat. J Agric Food Chem 2018;66(33):8805–8813. doi: 10.1021/acs.jafc.8b03254
70. Vázquez L, Flórez AB, Guadamuro L, Mayo B. Effect of Soy Isoflavones on Growth of Representative Bacterial Species from the Human Gut. Nutrients 2017;9(7). doi: 10.3390/nu9070727
71. Hida M, Aiba Y, Sawamura S, et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996;74(2):349–355. doi: 10.1159/000189334
72. Wang I-K, Lai H-C, Yu C-J et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol 2012;78(4):1107–1112. doi: 10.1128/AEM.05605-11
73. Vaziri ND, Wong J, Pahl M et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013;83(2):308–315. doi: 10.1038/ki.2012.345
74. Yoshifuji A, Wakino S, Irie J et al. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant 2016;31(3):401–412. doi: 10.1093/ndt/gfv353
75. Wong J, Piceno YM, DeSantis TZ et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014;39(3):230–237. doi: 10.1159/000360010
76. Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017;9(3). doi: 10.3390/nu9030208
77. Cigarran Guldris S, González Parra E, Cases Amenós A. Gut microbiota in chronic kidney disease. Nefrologia 2017;37(1):9–19. doi: 10.1016/j.nefro.2016.05.008
78. Kramer H. Diet and Chronic Kidney Disease. Adv Nutr 2019;10(Suppl_4):S367–S379. doi: 10.1093/advances/nmz011
79. Anders H-J, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 2013;83(6):1010–1016. doi: 10.1038/ki.2012.440
80. Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 2012;21(6):587–592. doi: 10.1097/MNH.0b013e328358c8d5
81. Glorieux G, Gryp T, Perna A. Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins (Basel) 2020;12(4). doi: 10.3390/toxins12040245
82. Poesen R, Ramezani A, Claes K et al. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clinical Journal of the American Society of Nephrology 2015;10(9):1525–1533. doi: 10.2215/CJN.03100315
83. Li F, Wang M, Wang J et al. Alterations to the Gut Microbiota and Their Correlation With Inflammatory Factors in Chronic Kidney Disease. Front Cell Infect Microbiol 2019;9:206. doi: 10.3389/ fcimb.2019.00206
84. Kanbay M, Onal EM, Afsar B et al. The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 2018;50(8):1453–1466. doi: 10.1007/s11255-018-1873-2
85. Bosi E, Molteni L, Radaelli MG et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006;49(12):2824–2827. doi: 10.1007/s00125-006-0465-3
86. Cani PD, Possemiers S, van de Wiele T et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58(8):1091–1103. doi: 10.1136/gut.2008.165886
87. Pushpanathan P, Srikanth P, Seshadri KG, et al. Gut Microbiota in Type 2 Diabetes Individuals and Correlation with Monocyte Chemoattractant Protein1 and Interferon Gamma from Patients Attending a Tertiary Care Centre in Chennai, India. Indian J Endocrinol Metab 2016;20(4):523–530. doi: 10.4103/2230-8210.183474
88. Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010;298(6):G807–819. doi: 10.1152/ajpgi.00243.2009
89. Prokopienko AJ, Nolin TD. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev Clin Pharmacol 2018;11(1):71–82. doi: 10.1080/17512433.2018.1378095
90. Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56(7):1761–1772. doi: 10.2337/db06-1491
91. Nymark M, Pussinen PJ, Tuomainen AM et al. Serum lipopolysaccharide activity is associated with the progression of kidney disease in finnish patients with type 1 diabetes. Diabetes Care 2009;32(9):1689–1693. doi: 10.2337/dc09-0467
92. Tai N, Peng J, Liu F et al. Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. J Exp Med 2016;213(10):2129–2146. doi: 10.1084/jem.20160526
93. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014;25(4):657–670. doi: 10.1681/ASN.2013080905
94. Gupta J, Mitra N, Kanetsky PA, et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clinical Journal of the American Society of Nephrology 2012;7(12):1938–1946. doi: 10.2215/CJN.03500412
95. Andrade-Oliveira V, Amano MT, Correa-Costa M et al. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J Am Soc Nephrol 2015;26(8):1877–1888. doi: 10.1681/ASN.2014030288
96. Ranganathan N, Patel BG, Ranganathan P et al. In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 2006;52(1):70–79. doi: 10.1097/01.mat.0000191345.45735.00
97. Prakash S, Chang TM. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 1996;2(8):883–887. doi: 10.1038/nm0896-883
98. Ranganathan N, Ranganathan P, Friedman EA et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 2010;27(9):634–647. doi: 10.1007/s12325-010-0059-9
99. Kirk J, Dunker KS. Dietary counseling: the ingredient for successfully addressing the use of herbal supplements and probiotics in chronic kidney disease. Adv Chronic Kidney Dis 2014;21(4):377–384. doi: 10.1053/j.ackd.2014.05.001
100. Miranda Alatriste PV, Urbina Arronte R, Gómez Espinosa CO et al. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp 2014;29(3):582–590. doi: 10.3305/nh.2014.29.3.7179
101. Zheng HJ, Guo J, Wang Q et al. Probiotics, prebiotics, and synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021;61(4):577–598. doi: 10.1080/10408398.2020.1740645
102. Ogawa T, Shimada M, Nagano N et al. Oral administration of Bifidobacterium longum in a gastro-resistant seamless capsule decreases serum phosphate levels in patients receiving haemodialysis. Clin Kidney J 2012;5(4):373–374. doi: 10.1093/ckj/sfs072
103. Bobkova IN, Shchukina AA, Shestakova MV. Assessment of nephrin and podocin levels in the urine of patients with diabetes mellitus. Nephrology (Saint-Petersburg) 2017;21(2):33–40 (In Russ.). https://doi.org/10.24884/1561-6274-2017-21-2-33-40
104. Barengolts E, Smith ED, Reutrakul S et al. The Effect of Probiotic Yogurt on Glycemic Control in Type 2 Diabetes or Obesity: A Meta-Analysis of Nine Randomized Controlled Trials. Nutrients 2019;11(3). doi: 10.3390/nu11030671
105. Soleimani A, Zarrati Mojarrad M, Bahmani F et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int 2017;91(2):435–442. doi: 10.1016/j.kint.2016.09.040
106. Sirich TL, Fong K, Larive B et al. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the Frequent Hemodialysis Network Daily Trial. Kidney Int 2017;91(5):1186–1192. doi: 10.1016/j.kint.2016.11.002
107. Takayama F, Taki K, Niwa T. Bifidobacterium in gastroresistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 2003;41(3 Suppl 1):S142-5. doi: 10.1053/ajkd.2003.50104
108. Nakabayashi I, Nakamura M, Kawakami K et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 2011;26(3):1094–1098. doi: 10.1093/ndt/gfq624
109. Simenhoff ML, Dunn SR, Zollner GP et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 1996;22(1–3):92–96
110. Wang I-K, Wu Y-Y, Yang Y-F et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 2015;6(4):423–430. doi: 10.3920/BM2014.0088
111. Toh S-L, Boswell-Ruys CL, Lee BSB et al. Probiotics for preventing urinary tract infection in people with neuropathic bladder. Cochrane Database Syst Rev 2017;9(9):CD010723. doi: 10.1002/14651858.CD010723.pub2
112. Darouiche RO, Thornby JI, Cerra-Stewart C et al. Bacterial interference for prevention of urinary tract infection: a prospective, randomized, placebo-controlled, double-blind pilot trial. Clin Infect Dis 2005;41(10):1531–1534. doi: 10.1086/497272
113. Darouiche RO, Green BG, Donovan WH et al. Multicenter Randomized Controlled Trial of Bacterial Interference for Prevention of Urinary Tract Infection in Patients With Neurogenic Bladder. Urology 2011;78(2):341–346. doi: 10.1016/j.urology.2011.03.062
114. Sundén F, Håkansson L, Ljunggren E, Wullt B. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 2010;184(1):179–185. doi: 10.1016/j.juro.2010.03.024
115. Robinson BM, Akizawa T, Jager KJ et al. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet 2016;388(10041):294–306. doi: 10.1016/S0140-6736(16)30448-2
116. Zununi Vahed S, Ardalan M, Samadi N, Omidi Y. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients. Bioimpacts 2015;5(1):45–54. doi: 10.15171/bi.2015.12
117. Zununi Vahed S, Samadi N, Mostafidi E et al. Genetics and Epigenetics of Chronic Allograft Dysfunction in Kidney Transplants. Iranian journal of kidney diseases 2016;10:1–9
118. Zaza G, Dalla Gassa A, Felis G et al. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS One 2017;12(5):e0178228. doi: 10.1371/journal.pone.0178228
119. Ardalan M, Vahed SZ. Gut microbiota and renal transplant outcome. Biomed Pharmacother 2017;90:229–236. doi: 10.1016/j.biopha.2017.02.114
120. Lee JR, Muthukumar T, Dadhania D et al. Gut microbial community structure and complications after kidney transplantation: a pilot study. Transplantation 2014;98(7):697–705. doi: 10.1097/TP.0000000000000370
121. Lee JR, Muthukumar T, Dadhania D et al. Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS One 2015;10(3):e0122399. doi: 10.1371/journal.pone.0122399
122. Zhang J, Ren F-G, Liu P, et al. Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation. World J Gastroenterol 2017;23(46):8217–8226. doi: 10.3748/wjg.v23.i46.8217
123. Smirnov AV, Kayukov IG, Essaian AM et al. Preventive approach in nephrology. Nephrology (Saint-Petersburg) 2004;8(3):7–14. (In Russ.) https://doi.org/10.24884/1561-6274-2004-8-3-7-14
Review
For citations:
Kuznetzova A.B., Prazdnova E.V., Chistyakov V.A., Kutsevalova O.Yu., Batiushin M.M. Are Probiotics Needed in Nephrology? Nephrology (Saint-Petersburg). 2022;26(4):18-30. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-4-18-30