Preview

Нефрология

Расширенный поиск

Роль мочевой кислоты в развитии воспаления при заболеваниях почек

https://doi.org/10.36485/1561-6274-2023-27-2-39-46

Аннотация

Бессимптомная гиперурикемия часто наблюдается у пациентов с заболеваниями почек. Значительное число эпидемиологических исследований свидетельствуют о том, что повышенный уровень мочевой кислоты играет причинную роль в развитии и прогрессировании заболеваний почек. Но является ли гиперурикемия просто результатом снижения почечной экскреции мочевой кислоты или способствует прогрессированию болезни почек, остается спорным вопросом. За последние два десятилетия многочисленные экспериментальные исследования расширили знания о биологическом воздействии мочевой кислоты за пределы ее роли в развитии подагры. В частности, мочевая кислота индуцирует активацию иммунной системы и влияет не только на клетки тканей почек, но и на эндотелиальные клетки.  Все это привело к представлению мочевой кислоты как потенциального и модифицирующего фактора риска болезни почек. В данном обзоре рассматривается влияние мочевой кислоты на иммунную систему и далее на почечную ткань  при воспалении. 

Об авторах

Н. А. Куницкая
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Россия

Куницкая Наталия Александровна, проф., д-р мед. наук

191015, Санкт-Петербург, Пискаревский пр., д. 47

Тел.: (812) 303-50-00



А. Л. Арьев
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Россия

Арьев Александр Леонидович, д-р мед. наук, проф. 

 

191015, Санкт-Петербург, Пискаревский пр., д. 47

Тел.: (812) 303-50-00



Н. Н. Кулаева
Северо-Западный государственный медицинский университет имени И.И. Мечникова
Россия

Кулаева Наталия Николаевна, канд. мед. наук, доц. 

191015, Санкт-Петербург, Пискаревский пр., д. 47

Тел.: (812) 303-50-00



Список литературы

1. Asakawa S, Shibata S, Morimoto C et al. Podocyte injury and albuminuria in experimental hyperuricemic model rats. Oxid Med Cell Longev 2017: 1–14, 2017. doi: 10.1155/2017/3759153

2. Atukeren P. Novel Prospects in Oxidative and Nitrosative Stress. London: IntechOpen, 2018: 156. doi: 10.5772/intechopen.70102

3. Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016: 1–9, 2016. doi: 10.1155/2016/5698931

4. Braga TT, Forni MF, Correa-Costa M et al. Soluble uric acid activates the NLRP3 inflammasome. Sci Rep 7: 39884, 2017. doi: 10.1038/srep39884

5. Cai W, Duan XM, Liu Y, Yu J et al. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. Biomed Res Int 2017;2017:4391920. doi: 10.1155/2017/4391920

6. Eleftheriadis T, Pissas G, Sounidaki M et al. Urate crystals directly activate the T-cell receptor complex and induce T-cell proliferation. Biomed Rep 7: 365–369, 2017. doi: 10.3892/br.2017.960

7. Fan S, Zhang P, Wang AY et al. Hyperuricemia and its related histopathological features on renal biopsy. BMC Nephrol 2019 Mar 18;20(1):95. doi: 10.1186/s12882-019-1275-4

8. Forrester SJ, Kikuchi DS, Hernandes MS et al. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res 2018 Mar 16;122(6):877–902. doi: 10.1161/CIRCRESAHA.117.311401

9. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 1988 Dec;85(24):9748–9752. doi: 10.1073/pnas.85.24.9748

10. Hahn K, Kanbay M, Lanaspa MA, Johnson RJ, Ejaz AA. Serum uric acid and acute kidney injury: A mini review. J Adv Res 2017 Sep;8(5):529–536. doi: 10.1016/j.jare.2016.09.006

11. Hovind P, Rossing P, Tarnow L et al. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 2009 Jul;58(7):1668–1671. doi: 10.2337/db09-0014

12. Isaka Y, Takabatake Y, Takahashi A et al. Hyperuricemiainduced inflammasome and kidney diseases. Nephrol Dial Transplant 2016 Jun;31(6):890–896. doi: 10.1093/ndt/gfv024

13. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, SanchezLozada LG, Feig DI, Shafiu M, Segal M, Glassock RJ, Shimada M, Roncal C, Nakagawa T. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev 2009 Feb;30(1):96–116. doi: 10.1210/er.2008-0033

14. Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ. Uric acid, evolution and primitive cultures. Semin Nephrol 2005 Jan;25(1):3–8. doi: 10.1016/j.semnephrol.2004.09.002

15. Kanbay M, Solak Y, Afsar B et al. Serum Uric Acid and Risk for Acute Kidney Injury Following Contrast. Angiology 2017 Feb;68(2):132–144. doi: 10.1177/0003319716644395

16. Kim SM, Lee SH, Kim YG et al. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Renal Physiol 2015 May 1;308(9):F993–F1003. doi: 10.1152/ajprenal.00637.2014

17. Kimura K, Hosoya T, Uchida S et al. Febuxostat Therapy for Patients With Stage 3 CKD and Asymptomatic Hyperuricemia: A Randomized Trial. Am J Kidney Dis 2018 Dec;72(6):798–810. doi: 10.1053/j.ajkd.2018.06.028

18. Kojima S, Matsui K, Hiramitsu S et al. Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion StuDy. Eur Heart J 2019 Jun 7;40(22):1778–1786. doi: 10.1093/eurheartj/ehz119

19. Kool M, Willart MA, van Nimwegen M et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 2011 Apr 22;34(4):527–540. doi: 10.1016/j.immuni.2011.03.015

20. Kutzing MK, Firestein BL. Altered uric acid levels and disease states. J Pharmacol Exp Ther 2008 Jan;324(1):1–7. doi: 10.1124/ jpet.107.129031

21. Li S, Sun Z, Zhang Y, Ruan Y, Chen Q, Gong W, Yu J, Xia W, He JC, Huang S, Zhang A, Ding G, Jia Z. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation. Oncotarget 2017 Feb 7;8(6):10185–10198. doi: 10.18632/ oncotarget.14363

22. Luo SF, Chin CY, Ho LJ, Tseng WY, Kuo CF, Lai JH. Monosodium urate crystals induced ICAM-1 expression and cell-cell adhesion in renal mesangial cells: Implications for the pathogenesis of gouty nephropathy. J Microbiol Immunol Infect 2020 Feb;53(1):23–32. doi: 10.1016/j.jmii.2017.12.004

23. Li LL, Ma YH, Bi YL, Sun FR et al. Serum Uric Acid May Aggravate Alzheimer's Disease Risk by Affecting Amyloidosis in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021;81(1):389–401. doi: 10.3233/JAD-201192

24. Ma G, Wang G, Xiao D, Teng W, Hui X, Ma G. Meta-analysis on allopurinol preventive intervention on contrast-induced acute kidney injury with random controlled trials: PRISMA. Medicine (Baltimore) 2019 Jun;98(25):e15962. doi: 10.1097/MD.0000000000015962

25. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature 2006 Mar 9;440(7081):237–2341. doi: 10.1038/nature04516

26. Mazzali M, Kim YG, Suga S et al. Hyperuricemia exacerbates chronic cyclosporine nephropathy. Transplantation 2001 Apr 15;71(7):900–905. doi: 10.1097/00007890-200104150-00014

27. Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 2002 Jul;9(3):161–175. doi: 10.1038/sj.mn.7800136

28. Mullan K, Cardwell CR, McGuinness B, Woodside JV, McKay GJ. Plasma Antioxidant Status in Patients with Alzheimer's Disease and Cognitively Intact Elderly: A Meta-Analysis of Case-Control Studies. J Alzheimers Dis 2018;62(1):305–317. doi: 10.3233/JAD-170758

29. Niewczas MA, Pavkov ME, Skupien J et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med 2019 May;25(5):805–813. doi: 10.1038/s41591-019-0415-5

30. Obermayr RP, Temml C, Gutjahr G et al. Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 2008 Dec;19(12):2407–2413. doi: 10.1681/ASN.2008010080

31. Oğuz N, Kırça M, Çetin A et al. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells. J Recept Signal Transduct Res 2017 Oct;37(5):500–505. doi: 10.10 80/10799893.2017.1360350

32. Oh TR, Choi HS, Kim CS et al. Hyperuricemia has increased the risk of progression of chronic kidney disease: propensity score matching analysis from the KNOW-CKD study. Sci Rep 2019 Apr 30;9(1):6681. doi: 10.1038/s41598-019-43241-3

33. Qiao M, Chen C, Liang Y et al. The Influence of Serum Uric Acid Level on Alzheimer's Disease: A Narrative Review. Biomed Res Int 2021 Jun 2;2021:5525710. doi: 10.1155/2021/5525710

34. Sanchez-Lozada LG, Andres-Hernando A, Garcia-Arroyo FE et al. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J Biol Chem 2019 Mar 15;294(11):4272–4281. doi: 10.1074/jbc.RA118.006158

35. Sánchez-Lozada LG, Tapia E, Santamaría J et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 2005 Jan;67(1):237–247. doi: 10.1111/j.1523-1755.2005.00074.x

36. Shin DH. To treat or not to treat asymptomatic hyperuricemia in chronic kidney disease. Kidney Res Clin Pract 2019 Sep 30;38(3):257–259. doi: 10.23876/j.krcp.19.074

37. Strausser SA, Nakano D, Souma T. Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response. Curr Opin Nephrol Hypertens 2018 Jul;27(4):314–322. doi: 10.1097/ MNH.0000000000000424

38. Terkeltaub R, Bushinsky DA, Becker MA. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther 2006;8 Suppl 1(Suppl 1):S4. doi: 10.1186/ar1909

39. Toyoki D, Shibata S, Kuribayashi-Okuma E et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATPbinding cassette subfamily G member 2. Am J Physiol Renal Physiol 2017 Sep 1;313(3):F826–F834. doi: 10.1152/ajprenal.00012.2017

40. Tsai CW, Chiu HT, Huang HC et al. Uric acid predicts adverse outcomes in chronic kidney disease: a novel insight from trajectory analyses. Nephrol Dial Transplant 2018 Feb 1;33(2):231–241. doi: 10.1093/ndt/gfx297

41. Choi WJ, Hong YA, Min JW, Koh ES, Kim HD, Ban TH, Kim YS, Kim YK, Shin SJ, Kim SY, Kim YO, Yang CW, Chang YK. The Serum Uric Acid Level Is Related to the More Severe Renal Histopathology of Female IgA Nephropathy Patients. J Clin Med 2021 Apr 27;10(9):1885. doi: 10.3390/jcm10091885

42. Turner JE, Becker M, Mittrücker HW, Panzer U. TissueResident Lymphocytes in the Kidney. J Am Soc Nephrol 2018 Feb;29(2):389–399. doi: 10.1681/ASN.2017060599

43. Tuttle KR, Short RA, Johnson RJ. Sex differences in uric acid and risk factors for coronary artery disease. Am J Cardiol 2001 Jun 15;87(12):1411–1414. doi: 10.1016/s0002-9149(01)01566-1

44. Uedono H, Tsuda A, Ishimura E, Nakatani S, Kurajoh M, Mori K, Uchida J, Emoto M, Nakatani T, Inaba M. U-shaped relationship between serum uric acid levels and intrarenal hemodynamic parameters in healthy subjects. Am J Physiol Renal Physiol 2017 Jun 1;312(6):F992–F997. doi: 10.1152/ajprenal.00645.2016

45. Wang Y, Ma X, Su C et al. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine. Sci Rep 5, 16427 (2015). https://doi.org/10.1038/srep16427

46. Weiner DE, Tighiouart H, Elsayed EF et al. Uric acid and incident kidney disease in the community. J Am Soc Nephrol 2008 Jun;19(6):1204–1211. doi: 10.1681/ASN.2007101075

47. Xiao J, Fu C, Zhang X et al. Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol Immunol 2015 Aug;66(2):310–318. doi: 10.1016/j.molimm.2015.03.250

48. Xu L, Shi Y, Zhuang S, Liu N. Recent advances on uric acid transporters. Oncotarget 2017 Aug 10;8(59):100852–100862. doi: 10.18632/oncotarget.20135

49. Xu X, Hu J, Song N et al. Hyperuricemia increases the risk of acute kidney injury: a systematic review and meta-analysis. BMC Nephrol 2017 Jan 17;18(1):27. doi: 10.1186/s12882-016-0433-1

50. Yang X, Gu J, Lv H, Li H, Cheng Y, Liu Y, Jiang Y. Uric acid induced inflammatory responses in endothelial cells via up-regulating(pro) renin receptor. Biomed Pharmacother 2019 Jan;109:1163–1170. doi: 10.1016/j.biopha.2018.10.129

51. Yao C, Niu L, Fu Y, Zhu X, Yang J, Zhao P, Sun X, Ma Y, Li S, Li J. Cognition, motor symptoms, and glycolipid metabolism in Parkinson's disease with depressive symptoms. J Neural Transm (Vienna) 2022 Jun;129(5–6):563–573. doi: 10.1007/s00702-021-02437-6


Рецензия

Для цитирования:


Куницкая Н.А., Арьев А.Л., Кулаева Н.Н. Роль мочевой кислоты в развитии воспаления при заболеваниях почек. Нефрология. 2023;27(2):39-46. https://doi.org/10.36485/1561-6274-2023-27-2-39-46

For citation:


Kunitskaya N.A., Ariev A.L., Kulaeva N.N. The role of uric acid in the development of infl ammation in kidney disease. Nephrology (Saint-Petersburg). 2023;27(2):39-46. (In Russ.) https://doi.org/10.36485/1561-6274-2023-27-2-39-46

Просмотров: 1322


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)