Preview

Nephrology (Saint-Petersburg)

Advanced search

The use of dapaglifl ozin in a comorbid patient: new perspectives

https://doi.org/10.36485/1561-6274-2023-27-2-109-115

Abstract

The development of the modern world is manifested, inter alia, by an increase in the prevalence of obesity and cardiovascular diseases. Treatment of these conditions is associated with the need to prescribe multicomponent therapy, which complicates the control of drug interactions, leads to a decrease in compliance and polypharmacy. A large number of drugs taken in a particular patient dictates the need to search for drugs, the appointment of which contributes to the control of several diseases at once, can be successfully used in patients with reduced renal function, in the presence of cardiovascular diseases. The presented description of a clinical case demonstrates an example of the use of a type 2 sodium glucose cotransporter inhibitor – dapagliflozin in a patient with type 2 diabetes mellitus, chronic kidney disease, chronic heart failure and gout. 

About the Authors

T. S. Panevin
V.A. Nasonova Scientific and Research Institute of Rheumatology
Russian Federation

Taras S. Panevin, MD, PhD

34A Kashirskoye shosse, Moscow, 115522



M. S. Eliseev
V.A. Nasonova Scientific and Research Institute of Rheumatology
Russian Federation

Maxim S. Eliseev, MD, PhD

34A Kashirskoye shosse, Moscow, 115522



A. O. Bobkova
V.A. Nasonova Scientific and Research Institute of Rheumatology
Russian Federation

Resident Anastasia O. Bobkova MD

34A Kashirskoye shosse, Moscow, 115522



A. E. Dimitreva
V.A. Nasonova Scientific and Research Institute of Rheumatology
Russian Federation

Anastasia E. Dimitreva MD, rheumatologist

34A Kashirskoye shosse, Moscow, 115522



M. M. Urumova
V.A. Nasonova Scientific and Research Institute of Rheumatology
Russian Federation

Margarita M. Urumova MD, PhD

34A Kashirskoye shosse, Moscow, 115522



References

1. Instructions for medical use of the drug Forsiga (film-coated tablets, 5 mg, 10 mg). Registration certificate LP-002596 dated 08/21/2014 (reissued on 10/01/2021)

2. Panevin TS, Eliseev MS, Shestakova MV, Nasonov EL. Advantages of therapy with sodium glucose cotransporter type 2 inhibitors in patients with type 2 diabetes mellitus in combination with hyperuricemia and gout. Therapeutic Archive 2020;92(5):110–118. (In Russ.)]. doi: 10.26442/00403660.2020.05.000633

3. Chung MC, Hung PH, Hsiao PJ et al. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw Open 2021;4(11):e2135353. Published 2021 Nov 1. doi:10.1001/jamanetworkopen.2021.35353

4. Barskova VG, Eliseev MS, Denisov IS, et al. The frequency of metabolic syndrome and concomitant diseases in patients with gout. Data from a multicenter study. Nauchno-prakticheskaya revmatologiya. 2012;50(6):15–18. (In Russ.)

5. Krishnan E, Svendsen K, Neaton JD, et al. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med 2008;168(10):1104–1110. doi:10.1001/archinte.168.10.1104

6. Vázquez-Mellado J, Alvarez Hernández E, Burgos-Vargas R. Primary prevention in rheumatology: the importance of hyperuricemia. Best Pract Res Clin Rheumatol 2004;18(2):111–124. doi:10.1016/j.berh.2004.01.001

7. Hernández-Cuevas CB, Roque LH, Huerta-Sil G et al. First acute gout attacks commonly precede features of the metabolic syndrome. J Clin Rheumatol 2009;15(2):65–67. doi:10.1097/RHU.0b013e31819c0dba

8. Zuo T, Liu X, Jiang L et al. Hyperuricemia and coronary heart disease mortality: a meta-analysis of prospective cohort studies. BMC Cardiovasc. Disord 2016; 16(1): 207. doi: 10.1186/s12872-016-0379-z71

9. Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. The Lancet Diabetes & Endocrinology 2014;2(11):911–922. doi: 10.1016/s2213-8587(14)70004-x

10. Barnett AH. Impact of sodium glucose cotransporter 2 inhibitors on weight in patients with type 2 diabetes mellitus. Postgrad Med 2013;125:92–100. doi: 10.3810/pgm.2013.09.2698

11. Ferrannini G, Hach T, Crowe S et al. Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care 2015;38(9):1730–1735. doi: 10.2337/dc15-0355

12. Baker WL, Smyth LR, Riche DM et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. Journal of the American Society of Hypertension 2014;8(4):262–275.e9. doi: 10.1016/j.jash.2014.01.007

13. Sano M, Chen S, Imazeki H et al. Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo-controlled, double-blind clinical trials. Journal of Diabetes Investigation 2018;9(3):638–641. doi: 10.1111/jdi.12726

14. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone 2016;82:93–100. doi: 10.1016/j.bone.2015.04.026

15. Lin KM, Lu CL, Hung KC et al. The Paradoxical Role of Uric Acid in Osteoporosis. Nutrients 2019;11(9):2111. Published 2019 Sep 5. doi:10.3390/nu11092111

16. Ljunggren Ö, Bolinder J, Johansson L et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes, Obesity and Metabolism 2012;14(11):990–999. doi: 10.1111/j.1463-1326.2012.01630.x

17. Bolinder J, Ljunggren Ö, Johansson L et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes, Obesity and Metabolism 2013;16(2):159–169. doi: 10.1111/dom.12189

18. Vasilakou D, Karagiannis T, Athanasiadou E et al. Sodium–Glucose Cotransporter 2 Inhibitors for Type 2 Diabetes. Annals of Internal Medicine 2013;159(4):262. doi: 10.7326/0003-4819159-4-201308200-00007

19. Berhan A, Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocrine Disorders 2013;13(1). doi: 10.1186/1472-6823-13-58

20. Dedov II, Shestakova MV, Mayorov AYu et al. “Algorithms for specialized medical care for patients with diabetes mellitus” Edited by I.I. Dedova, M.V. Shestakova, A.Yu. Mayorova 9th edition. Diabetes. 2019;22(1S1):1–144. https://doi.org/10.14341/DM221S1

21. Tereshchenko SN, Shestakova MV, Ageev FT et al. Rationale for dapagliflozin administration for the prevention of adverse outcomes in patients with heart failure with reduced ejection fraction. Expert consensus statement. Russian Journal of Cardiology 2020;25(5):3919. (In Russ.)] doi:10.15829/1560-4071-2020-3919

22. Orso F, Fabbri G, Maggioni AP. Epidemiology of heart failure. Handb Exp Pharmacol 2017;243:15-33. doi:10.1007/164_2016_74

23. Tamariz L, Harzand A, Palacio A, Verma S, Jones J, Hare J. Uric acid as a predictor of all-cause mortality in heart failure: a meta-analysis. Congest Heart Fail. 2011;17(1):25–30

24. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care. 2020;43(3):508–511. doi:10.2337/dci19-0074

25. McMurray JJV, Solomon SD, Inzucchi SE et al. DAPAHF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381(21):1995–2008. doi:10.1056/NEJMoa1911303

26. Kosiborod MN, Jhund PS, Docherty KF et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPА-HF trial. Circulation. 2020;141(2):90–99. doi:10.1161/CIRCULATIONAHA.119.044138

27. Verma S, Mazer CD, Yan AT et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 2019;140(21):1693–1702. doi:10.1161/CIRCULATIONAHA.119.042375

28. Chilton R, Tikkanen I, Cannon CP et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 2015;17(12):1180–1193. doi:10.1111/dom.12572

29. Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial [published correction appears in Lancet Diabetes Endocrinol. 2019 Aug;7(8):e20]. Lancet Diabetes Endocrinol 2019;7(8):606–617. doi:10.1016/S2213-8587(19)30180-9

30. Wheeler DC, Stefánsson BV, Jongs N et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021;9(1):22–31. doi:10.1016/S2213-8587(20)30369-7

31. Karalliedde J. Кардио- и нефропротективные эффекты глифлозинов помимо снижения уровня гликемии. Российский кардиологический журнал. 2021;26(3):4323. Karalliedde J. The role of SGLT2 inhibitors beyond glucoselowering to cardio-renal protection. Russian Journal of Cardiology 2021;26(3):4323. (In Russ.) doi:10.15829/1560-4071-2021-4323

32. Chikina MN, Eliseev MS, Zhelyabina OV. Practical application of national clinical guidelines for the management of gout (preliminary data). Sovremennaya revmatologiya. Modern Rheumatology Journal 2020;14(2):97–103. (In Russ.). doi: 10.14412/1996-70122020-2-97-103

33. McGill JB. The SGLT2 Inhibitor Empagliflozin for the Treatment of Type 2 Diabetes Mellitus: a Bench to Bedside Review. Diabetes Therapy. 2014;5(1):43–63. doi: 10.1007/s13300-014-0063-1

34. Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter. American Journal of Physiology-Endocrinology and Metabolism 2009;297(4):E831– E835. doi: 10.1152/ajpendo.00296.2009

35. Caulfield MJ, Munroe PB, O’Neill D et al. SLC2A9 Is a HighCapacity Urate Transporter in Humans. Hattersley A, editor. PLoS Medicine 2008;5(10):e197. doi: 10.1371/journal.pmed.0050197

36. List JF, Woo V, Morales E, et al. Sodium-Glucose Cotransport Inhibition With Dapagliflozin in Type 2 Diabetes. Diabetes Care 2008;32(4):650–657. doi: 10.2337/dc08-1863

37. Roden M, Merker L, Christiansen AV et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: a double-blind extension of a Phase III randomized controlled trial. Cardiovascular Diabetology 2015;14(1). doi: 10.1186/s12933015-0314-0

38. Davies MJ, Trujillo A, Vijapurkar U et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism 2015;17(4):426–429. doi: 10.1111/dom.12439

39. Zhao Y, Xu L, Tian D et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes, Obesity and Metabolism 2017;20(2):458–462. doi: 10.1111/dom.13101

40. Xin Y, Guo Y, Li Y et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi Journal of Biological Sciences. 2019;26(2):421–426. doi: 10.1016/j.sjbs.2018.11.013


Review

For citations:


Panevin T.S., Eliseev M.S., Bobkova A.O., Dimitreva A.E., Urumova M.M. The use of dapaglifl ozin in a comorbid patient: new perspectives. Nephrology (Saint-Petersburg). 2023;27(2):109-115. (In Russ.) https://doi.org/10.36485/1561-6274-2023-27-2-109-115

Views: 488


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)