

Дисфункция липопротеинов у больных с хронической болезнью почек (ХБП). Патогенез и лечение ХБП – дислипидемии (обзор литературы)
https://doi.org/10.36485/1561-6274-2024-28-1-13-29
EDN: BTZUND
Аннотация
Дислипидемия развивается на начальных стадиях хронической болезни почек (ХБП) и усугубляется по мере прогрессирования нефропатии. Основным проявлением дислипидемии является гиперхолестеринемия, особенно при нефротическом синдроме. Однако, при ХПБ 4–5 стадий она сменяется гипертриглицеридемией в сочетании с повышением в крови уровней липопротеинов низкой и очень низкой плотности, Подобные изменения тесно связаны с развитием сердечно-сосудистой патологии с высокой смертностью. Постепенно снижается содержание в крови липопротеинов высокой плотности (ЛВП), а также реверсивный транспорт холестерина. Таким образом утрачиваются их антиатерогенные, антиоксидантные и противовоспалительные функции. Основные компоненты ЛВП – аполипопротеины апоА-I и апоА-II, обеспечивающие функциональность, замещаются острофазовыми белками, а ЛВП лишаются своего кардиопротективного потенциала и приобретают провоспалительный и проатерогенный фенотип. По современным представлениям, дисфункция ЛВП, наряду с метаболическими сдвигами, в значительной степени обусловлена эпигенетическими нарушениями, влияющими на экспрессию генов и частично устраняемые назначением препаратов, содержащих микроРНК (мРНК) или антисмысловые нуклеотиды. Препараты с интерферирующими РНК, созданные в последние годы, с успехом применяются не только для лечения дислипидемии у нефрологических больных, но и пациентов с неопластическими процессами, воспалительными артритами, дегенеративными заболеваниями ЦНС, порфирией, гемофилией и многими другими заболеваниями. Предлагаемый обзор посвящен механизмам нарушений структуры и функций ЛВП у больных ХБП и коррекции этих нарушений.
Об авторе
В. М. ЕрмоленкоРоссия
Проф. Валентин Михайлович Ермоленко, д-р мед. наук, кафедра нефрологии и гемодиализа,
123242, Москва, ул. Баррикадная, д. 2/1, стр. 1
Список литературы
1. Attman P, Alaupovic P. Lipid abnormalities in chronic renal insufficiency. Kidney Int Suppl 1991;31:16–23
2. Sarnak M, Levey A, Schoolwerth A et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108(17):2151–2169. doi: 10.1161/01.CIR.0000095676.90936.80
3. Moorhead J, Chan M, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 1982;2(8311):1309–1311. doi: 10.1016/s0140-6736(82)91513-6
4. Barr D, Russ E, Eder H. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med 1951;11(4):480–493. doi: 10.1016/0002-9343(51)90183-0
5. Kannell W, Castelli W, Gordon T et al. Serum cholesterol, lipoprotein and the risk of coronary heart disease. The Framingheim study. Ann Intern Med 1971;74(4):1–12. doi: 10.7326/0063-4819-74-11
6. Assmann G, Schulte H. The prospective cardiovascular Munster (PROCAM) study. Prevalence of hyperlipidemia in persons with hypertension and/or diabetic mellitus and the relationship to coronary heart disease. Am Heart J 1988;116(6):1713–1721. doi: 10.1026/0002-8703(88)90220-7
7. Gordon D, Probstfield J, Garrison R et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989;79(1):8–15. doi: 10.1161/01.cir.79.1.8
8. Khera A, Cuchel M, de la Llera-Moya M et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011;364(2):127–135. doi: 10.1056/NEJMoa1001689
9. Bauer L, Kern S, Rogacev K et al. HDL Cholesterol efflux capacity and cardiovascular events in patients with chronic kidney disease. J Am Coll Cardiol 2017;69(2):246–247. doi: 10.1016/j.jacc.2016.10.054
10. Kopecky C, Ebtehaj S, Genser B et al. HDL cholesterol efflux does not predict cardiovascular risk in hemodialysis patients. J Am Soc Nephrol 2017;28(3):769–775. doi: 10.1681/ASN.2016030262
11. Wang N, Silver D, Costet P, Tall A. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 2000;275(42):33053–33058. doi: 10.1074/jbc.M005438200
12. Von Eckardstein A, Nofer J, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001;21(1):13–27. doi: 10.1161/01.atv.21.1.13
13. Shen W, Azhar S, Kraemer B. SP-B1: a unique multifunctional receptor for cholesterol influx and efflux. Ann Rev Physiol 2018;10(80):95–116. doi: 10.1146/annurev-physiol-0213170121550
14. Kopecky C, Haidinger M, Grünberger R et al. Restoration of renal function does not correct impairment of uremia HDL properties. JASN 2015;26(3):565–575. doi: 10.1681/ASN.2013111219
15. Kawachi K, Kataoka H, Manabe S et al. Low HDL cholesterol as predictor chronic kidney disease progression. Heart Vessels 2019;39(9):1440–1455. doi: 10.1007/500380-019-013-75-4
16. Li Y, Zhao M, He D et al. HDL in diabetic nephropathy has less effect in endothelial repairing than diabetes without complications. Lipid Health Dis 2016;15:76. doi: 10.1186/s12944-016- 0246-z
17. Wang O, Ferreira D, Nelson S et al. Metabolic charectization of menopause: cross-sectional and longitudinal evidence. BMC Med 2018;16(1):17. doi: 10.1186/s12916-018-1008-8
18. Lopez-Hollin J, Cantarell C, Jimeno I et al. A form of lipoprotein A-1 is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am J Tranpl 2013;13(2):493–500. doi: 20.1111/j.1600-6143.2012.04335.x
19. Shen H, Xu Y, Lu J et al. Small low-dense lipoprotein cholesterol was associated with future cardiovascular events in chronic kidney disease patients. BMC Nephrology 2016;17:143. doi: 10.1186/s12882-016-0358-8
20. Tumur Z, Shimizu H, Enomoto A et al. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol 2010;31(5):435–441. doi: 10.1159/000299798
21. Noto H, Hara M, Karasawa K et al. Human plasma platelet-activating factor acetylhydrolase binds to all the murine lipoproteins, conferring protection against oxidative stress. Arterioscler Thromb Vasc Biol 2003;23(5):829–835. doi: 10.1161/01.ATV.0000067701.09398.18
22. Panichi V, Maggiore U, Taccola D et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than Creactive protein in haemodialysis patients. Nephrol Dial Transplant 2004;19(5):1154–1160. doi: 10.1093/ndt/gfh052
23. Bergstrom J, Heimburger O, Lindholm B, Qureshi A. Elevated serum C-reactive protein is a strong predictor of increased mortality and low serum albumin in hemodialysis patients. J Am Soc Nephrol (abstract) 1995;6:573
24. Wang G, Zhang Q, Zhao X et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipid Res 2020;19:204. doi: 10.1186/s12944_020_01382-9
25. Wang G, Dang J, Li J et al. The role of high-density lipoprotein in COVID-19. Frontiers in pharmacology 2021;12:720283. doi: 10.3389/fphaz.2021.720283
26. Tangirala R, Tsukamato K, Chin S et al. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 1999;100(17):1816–1822. doi: 10.1161/01.CIR.100.17.1816
27. Moradi H, Pahl M, Elahimehr R, Vaziri N. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res 2009;153(2):77–85. doi: 10.1016/j.trsl.2008.11.007
28. Kalantar-Zadeh K, Kopple J, Kamranpour N et al. HDLinflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int 2007;72(9):1149–1156. doi: 10.1038/sj.ki.5002491
29. Vaziri N, Moradi H, Pahl M et al. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int 2009;76(4):437–444. doi: 10.1038/ki.2009.177
30. Rubinow K, Henderson C, Robinson-Cohen C et al. Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int 2017;92(6):1526–1535. doi: 10.1016/j.kint.2017.05.020
31. Kimak E, Ksiazek A, Solski J. Disturbed lipoprotein composition in non-dialyzed, hemodialysis, continuous ambulatory peritoneal dialysis and post-transplant patients with chronic renal failure. Clin Chem Lab Med 2006;44(1):64–69. doi: 10.1515/CCLM.2006.013
32. Sunder-Plassmann G, Födinger M, Säemann MD. Cardiovascular disease mortality in kidney transplant recipients: no light at the end of the tunnel? Am J Kidney Dis 2012;59(6):754–757. doi: 10.1053/j.ajkd.2011.11.022
33. Ortiz A, Covic A, Fliser D et al. Board of the EURECA-m Working Group of ERA-EDTA. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 2014;383(9931):1831–1843. doi: 10.1016/S0140-6736(14)60384-6
34. Oterdoom LH, de Vries AP, van Ree RM et al. N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 2009;87(10):1562-1570. doi: 10.1097/TP.0b013e3181a4bb80
35. Kopecky C, Haidinger M, Birner-Grünberger R et al. Restoration of renal function does not correct impairment of uremic HDL properties. J Am Soc Nephrol 2015;26(3):565–575. doi: 10.1681/ASN.2013111219
36. Kilpatrick RD, McAllister CJ, Kovesdy CP et al. Association between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol 2007;18(1):293–303. doi: 10.1681/ASN.2006070795
37. Annema W, Dikkers A, de Boer J et al. HDL Cholesterol efflux predicts graft failure in renal transplant recipients. J Am Soc Nephrol 2016;27(2):595–603. doi: 10.1681/ASN.2014090857
38. Honda H, Hirano T, Ueda M et al. Associations among apolipoproteins, oxidized high-density lipoprotein and cardiovascular events in patients on hemodialysis. PLoS One 2017;12(5):e0177980. doi: 10.1371/journal.pone.0177980
39. Van Lenten BJ, Hama SY, de Beer FC et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 1995;96(6):2758–2767. doi: 10.1172/JCI118345
40. Weichhart T, Kopecky C, Kubicek M et al. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol 2012;23(5):934–947. doi: 10.1681/ASN.2011070668
41. Sorrentino SA, Besler C, Rohrer L et al. Endothelialvasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 2010;121(1):110- 122. doi: 10.1161/CIRCULATIONAHA.108.836346
42. Riwanto M, Rohrer L, Roschitzki B et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 2013;127(8):891–904. doi: 10.1161/CIRCULATIONAHA.112.108753
43. Wang K, Zelnick LR, Hoofnagle AN et al. HFM Study. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 2018;13(8):1225–1233. doi: 10.2215/CJN.11321017
44. Besler C, Heinrich K, Rohrer L et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 2011;121(7):2693– 2708. doi: 10.1172/JCI42946
45. Boes E, Fliser D, Ritz E et al. Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 2006;17(2):528–536. doi: 10.1681/ASN.2005070733
46. Kollerits B, Krane V, Drechsler C et al. German Diabetes and Dialysis Study Investigators. Apolipoprotein A-IV concentrations and clinical outcomes in haemodialysis patients with type 2 diabetes mellitus-a post hoc analysis of the 4D Study. J Intern Med 2012;272(6):592–600. doi: 10.1111/j.1365-2796.2012.02585.x
47. Zewinger S, Kleber ME, Rohrer L et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur Heart J 2017;38(20):1597–1607. doi: 10.1093/eurheartj/ehx118
48. Schlesinger S, Sonntag SR, Lieb W, Maas R. Asymmetric and symmetric dimethylarginine as risk markers for total mortality and cardiovascular outcomes: a systematic review and metaanalysis of prospective studies. PLoS One 2016;11(11):e0165811. doi: 10.1371/journal.pone.0165811
49. Zhou LL, Hou FF, Wang GB et al. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int 2009;76(11):1148–1160. doi: 10.1038/ki.2009.322
50. Waddington CH. Basic ideas of biology. Moscow, Mir, 1970, p. 11–38
51. Susztak K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J Am Soc Nephrol 2014;25(1):10–17. doi: 10.1681/ASN.2013050461
52. Reddy MA, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 2015;88(2):250–261. doi: 10.1038/ki.2015.148
53. Au-Yeung KK, Woo CW, Sung FL et al. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res 2004;94(1):28–36. doi: 10.1161/01.RES.0000108264.67601.2C
54. Bostom AG, Carpenter MA, Kusek JW et al. Homocysteinelowering and cardiovascular disease outcomes in kidney transplant recipients: primary results from the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Circulation 2011;123(16):1763– 1770. doi: 10.1161/CIRCULATIONAHA.110.000588
55. Wing MR, Devaney JM, Joffe MM et al. Chronic Renal Insufficiency Cohort (CRIC) Study. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol Dial Transplant 2014;29(4):864–872. doi: 10.1093/ndt/gft537
56. Bomsztyk K, Denisenko O. Epigenetic alterations in acute kidney injury. Semin Nephrol 2013;33(4):327–340. doi: 10.1016/j.semnephrol.2013.05.005
57. Kato M, Natarajan R. Diabetic nephropathy-emerging epigenetic mechanisms. Nat Rev Nephrol 2014;10(9):517–530. doi: 10.1038/nrneph.2014.116
58. Baek D, Villén J, Shin C et al. The impact of microRNAs on protein output. Nature 2008;455(7209):64–71. doi: 10.1038/nature07242
59. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035
60. John B, Enright AJ, Aravin A et al. Human microRNA targets. PLoS Biol 2004;2(11):e363. doi: 10.1371/journal. pbio.0020363
61. Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol 2011;22(2):86– 92. doi: 10.1097/MOL.0b013e3283428d9d
62. Allen RM, Marquart TJ, Albert CJ et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med 2012;4(9):882–895. doi: 10.1002/emmm.201201228
63. Canfrán-Duque A, Ramírez CM, Goedeke L et al. microRNAs and HDL life cycle. Cardiovasc Res 2014;103(3):414–422. doi: 10.1093/cvr/cvu140
64. Trionfini P, Benigni A. MicroRNAs as master regulators of glomerular function in Health and disease. J Am Soc Nephrol 2017;28(6):1686–1696. doi: 10.1681/ASN.2016101117
65. Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 2011;300(3):F602–610. doi: 10.1152/ajprenal.00727.2010
66. Kato M, Park JT, Natarajan R. MicroRNAs and the glomerulus. Exp Cell Res 2012;318(9):993–1000. doi: 10.1016/j.yexcr.2012.02.034
67. Gebeshuber CA, Kornauth C, Dong L et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 2013;19(4):481–487. doi: 10.1038/nm.3142
68. Huang Z, Zhang Y, Zhou J, Zhang Y. Urinary exosomal miR193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed Res Int 2017;7298160. doi: 10.1155/2017/7298160
69. Khoshmirsafa M, Kianmehr N, Falak R et al. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int J Rheum Dis 2019;22(3):458–467. doi: 10.1111/1756-185X.13410
70. Hashad DI, Abdelmagid MH, Elsherif SH. microRNA146a expression in lupus patients with and without renal complications. J Clin Lab Anal 2012;26(1):35–40. doi: 10.1002/jcla.20501
71. Tangtanatakul P, Klinchanhom S, Sodsai P et al. Downregulation of let-7a and miR-21 in urine exosomes from lupus nephritis patients during disease flare. Asian Pac J Allergy Immunol 2019;37(4):189–197. doi: 10.12932/AP-130318-0280
72. Solé C, Moliné T, Vidal M et al. An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells 2019;8(8):773. doi: 10.3390/cells8080773
73. Ichii O, Otsuka-Kanazawa S, Horino T et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One 2014;9(10):e110383. doi: 10.1371/journal.pone.0110383
74. Kouri NM, Stangou M, Lioulios G et al. Serum levels of miR148b and Let-7b at diagnosis may have important impact in the response to treatment and long-term outcome in IgA nephropathy. J Clin Med 2021;10(9):1987. doi: 10.3390/jcm10091987
75. Barratt J, Pawluczyk I, Selvaskandan H. Clinical application of microRNAs in glomerular diseases. Nephrol Dial Transplant 2022;gfac230. doi: 10.1093/ndt/gfac230
76. Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 2019;18(6):421–446. doi: 10.1038/s41573-019-0017-4
77. Machin N, Ragni MV. An investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia A and B. J Blood Med 2018;9:135–140. doi: 10.2147/JBM.S159297
78. Shepherd J, Kastelein JJ, Bittner V et al. TNT (Treating to New Targets) Investigators. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J Am Coll Cardiol 2008;51(15):1448–1454. doi: 10.1016/j.jacc.2007.11.072
79. Fellström BC, Jardine AG, Schmieder RE et al. AURORA Study Group. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 2009;360(14):1395–1407. doi: 10.1056/NEJMoa0810177
80. Baigent C, Landray MJ, Reith C et al. SHARP Investigators. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 2011;377(9784):2181–2192. doi: 10.1016/S0140-6736(11)60739-3
81. Nikolic D, Nikfar S, Salari P. Lipid and Blood Pressure Meta-Analysis Collaboration Group. Effects of statins on lipid profile in chronic kidney disease patients: a meta-analysis of randomized controlled trials. Curr Med Res Opin 2013;29(5):435–451. doi: 10. 1185/03007995.2013.779237
82. Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016;173:30–57. doi: 10.1016/j.trsl.2016.02.008
83. Ridker PM, Danielson E, Fonseca FA et al. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359(21):2195–2207. doi: 10.1056/NEJMoa0807646
84. Moradi H, Streja E, Kashyap ML et al. Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol Dial Transplant 2014;29(8):1554–1562. doi: 10.1093/ndt/gfu022
85. Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis 2014;24(10):1057–1066. doi: 10.1016/j.numecd.2014.05.009
86. Davidson MH, Armani A, McKenney JM, Jacobson TA. Safety considerations with fibrate therapy. Am J Cardiol 2007;99(6A):3C–18C. doi: 10.1016/j.amjcard.2006.11.016
87. Rubins HB, Robins SJ, Collins D et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999;341(6):410–418. doi: 10.1056/NEJM199908053410604
88. Guan Y. Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol 2004;15(11):2801–2815. doi: 10.1097/01.ASN.0000139067.83419.46
89. Muto S, Aiba A, Saito Y et al. Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum Mol Genet 2002;11(15):1731–1742. doi: 10.1093/hmg/11.15.1731
90. Prichard S. Management of hyperlipidemia in patients on peritoneal dialysis: current approaches. Kidney Int Suppl 2006;103:S115–S117. doi: 10.1038/sj.ki.5001926
91. Heimbürger O. Statins and lipid-lowering strategies in PD. In book Peritoneal Dialysi. Ed. C Ronco, M Rosner, C Crepaldi. Karger, Vicenza. 2012, 178, 106–110. doi: 10.1159/000337828
92. Sharp Collaborative Group. Study of Heart and Renal Protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am Heart J 2010;160(5):785–794. e10. doi: 10.1016/j.ahj.2010.08.012
93. Jardine A, Holdaas H, Fellström B et al. Fluvastatin prevents cardiac death and myocardial infarction in renal transplant recipients: post-hoc subgroup analyses of the ALERT Study. Am J Transplant 2004;4(6):988–995. doi: 10.1111/j.1600-6143.2004. 00445.x
94. Holdaas H, Fellström B, Cole E et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant 2005;5(12):2929–2936. doi: 10.1111/j.1600-6143.2005.01105.x
95. Mach F, Ray K, Wiklund O et al. Adverse effects of statin therapy: perception vs. the evidence – focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur Heart J 2018;39(27):2526–2539. doi: 10.1093/eurheartj/ehy182
96. Filler G, Taheri S, McIntyre C et al. Chronic kidney disease stage affects small, dense low-density lipoprotein but not glycated low-density lipoprotein in younger chronic kidney disease patients: a cross-sectional study. Clin Kidney J 2018;11(3):383–388. doi: 10.1093/ckj/sfx115
97. Suarez-Alvarez B, Morgado-Pascual JL, Rayego-Mateos S et al. Inhibition of bromodomain and extraterminal domain family proteins ameliorates experimental renal damage. J Am Soc Nephrol 2017;28(2):504–519. doi: 10.1681/ASN.2015080910
98. Zhou X, Fan LX, Peters DJ et al. Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Hum Mol Genet 2015;24(14):3982–3993. doi: 10.1093/hmg/ddv136
99. Wasiak S, Tsujikawa LM, Halliday C et al. Benefit of Apabetalone on Plasma Proteins in Renal Disease. Kidney Int Rep 2017;3(3):711–721. doi: 10.1016/j.ekir.2017.12.001
100. Kulikowski E, Halliday C, Johansson J et al. Apabetalone mediated epigenetic modulation is associated with favorable kidney function and alkaline phosphatase profile in patients with chronic kidney disease. Kidney Blood Press Res 2018;43(2):449– 457. doi: 10.1159/000488257
101. Kalantar-Zadeh K, Schwartz GG, Nicholls SJ et al. BETonMACE Investigators. Effect of apabetalone on cardiovascular events in diabetes, ckd, and recent acute coronary syndrome: results from the BETonMACE randomized controlled trial. Clin J Am Soc Nephrol 2021;16(5):705–716. doi: 10.2215/CJN.16751020
102. Xiong C, Masucci MV, Zhou X et al. Pharmacological targeting of BET proteins inhibits renal fibroblast activation and alleviates renal fibrosis. Oncotarget 2016;7(43):69291–69308. doi: 10.18632/oncotarget.12498
103. Witasp A, Luttropp K, Qureshi AR et al. Longitudinal genome-wide DNA methylation changes in response to kidney failure replacement therapy. Sci Rep 2022;12(1):470. doi: 10.1038/s41598-021-04321-5
104. Sabatine MS, Giugliano RP, Wiviott SD et al. Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372(16):1500– 1509. doi: 10.1056/NEJMoa1500858
105. Leren T. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004;65(5):419–422. doi: 10.1111/j.0009-9163.2004.0238.x
106. Kosmas C, Arjona C, DeJesus E et al. Alirocumab in the treatment of hypercholesterolemia. Clin Med Rev Ther 2017;9(1):1–5. doi: 10.1177/117925817690768
107. Kosmas C, Pantou D, Sourlas A et al. New and emerging lipid-modifying drugs to lower LDL cholesterol. Drugs Context 2021;10:2021-8-3, doi: 10.7573/dic.2021-8-3
108. Nissen S, Lincoff M, Brennan D et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N Engl J Med 2023;388(15):1353–1364. doi: 10.1056/NEJMoa2215024
109. Cicero A, Pontremoli R, Fogacci F et al. Effect of Bempedoic acid on serum uric acid and related outcomes: a systematic review and meta-analysis of the available phase 2 and phase 3 clinical studies. Drug Saf 2020;43(8):727–736. doi: 10.1007/s40264-020-00931-6
110. Keaney J. Bempedoic Acid and the prevention of cardiovascular disease. New Engl J Med 2023;388(15):1427–1430. doi: 10.1056/NEJMe2300793
111. Ray K, Wright R, Kallend D et al. Two phase 3 trials of Inclisiran in patients with elevated LDL cholesterol. N Engl J Med 2020;382(16):1507–1519. doi: 10.1056/NEJMoa1912387
112. Dyrbuś K, Gąsior M, Penson P et al. Inclisiran-new hope in the management of lipid disorders? J Clin Lipidol 2020;14(1):16– 27. doi: 10.1016/j.jacl.2019.11.001
113. Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol 2008;59 Suppl 7:31–55
114. German C, Shapiro M. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 2020;34(1):1–9. doi: 10.1007/s40259-019-00399-6
115. Kersten S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol 2017;13(12):731–739. doi: 10.1038/nrendo.2017.119
116. Biterova E, Esmaeeli M, Alanen H et al. Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease. Sci Rep 2018;8(1):6752. doi: 10.1038/s41598-018-25237-7
117. Li N, Wang X, Xu Y et al. Identification of a novel liver x receptor agonist that regulates the expression of key cholesterol homeostasis genes with distinct pharmacological characteristics. Mol Pharmacol 2017;91(4):264–276. doi: 10.1124/mol.116.105213
118. Kersten S. Bypassing the LDL receptor in familial hypercholesterolemia. N Engl J Med 2020;383(8):775–776. doi: 10.1056/NEJMe2023520
119. Graham M, Lee R, Brandt T et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med 2017;377(3):222–232. doi: 10.1056/NEJMoa1701329
120. Nurmohamed N, Dallinga-Thie G, Stroes L et al. Targeting apoC-III and ANGPTL3 in the treatment of hypertriglyceridemia. Expert Rev Cardiovasc Ther 2020;18(6):355–361. doi: 10.1080/14779072.2020.1768848
121. Akdim E, Visser M, Tribble D et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol 2010;105(10):1413–1419. doi: 10.1016/j.amjcard.2010.01.003
122. Vuorio A, Tikkanen M, Kovanen P. Inhibition of hepatic microsomal triglyceride transfer protein – a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc Health Risk Manag 2014;10:263–270. doi: 10.2147/VHRM.S36641
123. Gouni-Berthold I, Alexander V, Yang O et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2021;9(5):264–275. doi: 10.1016/S2213-8587(21)00046-2
124. Bodzioch M, Orsó E, Klucken J et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22(4):347–351. doi: 10.1038/11914
125. Rust S, Rosier M, Funke H et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999;22(4):352–355. doi: 10.1038/11921
126. Du XM, Kim MJ, Hou L et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015;116(7):1133–1142. doi: 10.1161/CIRCRESAHA.116.305485
127. Vaziri N, Moradi H, Pahl M et al. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int 2009;76(4):437–444. doi: 10.1038/ki.2009.177
128. Navab M, Anantharamaiah G, Garber H et al. Oral administration of an apoA-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002;105(3):290–292. doi: 10.1161/hc0302.103711
129. Navab M, Ruchala P, Waring A et al. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids. J Lipid Res, 2009, 50(8), 1538–1547. doi: 10.1194/jlr.M800539-JLR200
Рецензия
Для цитирования:
Ермоленко В.М. Дисфункция липопротеинов у больных с хронической болезнью почек (ХБП). Патогенез и лечение ХБП – дислипидемии (обзор литературы). Нефрология. 2024;28(1):13-29. https://doi.org/10.36485/1561-6274-2024-28-1-13-29. EDN: BTZUND
For citation:
Ermolenko V.M. Lipoprotein dysfunction in patients with chronic kidney disease (CKD). Pathogenesis and treatment of CKD dyslipidemia (literature review). Nephrology (Saint-Petersburg). 2024;28(1):13-29. (In Russ.) https://doi.org/10.36485/1561-6274-2024-28-1-13-29. EDN: BTZUND