

Lipoprotein dysfunction in patients with chronic kidney disease (CKD). Pathogenesis and treatment of CKD dyslipidemia (literature review)
https://doi.org/10.36485/1561-6274-2024-28-1-13-29
EDN: BTZUND
Abstract
Dyslipidemia develops in the initial stages of chronic kidney disease (CKD) and worsens as nephropathy progresses. The main manifestation of dyslipidemia is hypercholesterolemia, especially in nephrotic syndrome. However, with CKD of stages 4-5, it is replaced by hypertriglyceridemia in combination with an increase in blood levels of lipoproteins low and very low density. Such changes are closely related to the development of cardiovascular pathology with high mortality. The content of high-density lipoproteins (HDL) in the blood is gradually decreasing, as well as the reversible transport of cholesterol. Thus, their anti-atherogenic, antioxidant and anti-inflammatory functions are lost. The main components of HDL – apolipoproteins ApoA-I and ApoA-II, which provide functionality, are replaced by acute-phase proteins, and HDL lose their cardioprotective potential and acquire a proinflammatory and proatherogenic phenotype. According to modern concepts, HDL dysfunction, along with metabolic shifts, is largely due to epigenetic disorders affecting gene expression and partially eliminated by prescribing drugs containing microRNAs (mRNAs) or antisense nucleotides. Drugs with interfering RNAs created in recent years have been successfully used not only for the treatment of dyslipidemia in nephrological patients, but also in patients with neoplastic processes, inflammatory arthritis, degenerative diseases of the central nervous system, porphyria, hemophilia and many other diseases. The proposed review is devoted to the mechanisms of disorders of the structure and functions of HDL in patients with CKD and the correction of these disorders.
About the Author
V. M. ErmolenkoRussian Federation
Prof. Valentin M. Ermolenko Department of Nephrology and Hemodialysis, MD, PhD, DMedSci,
123242, Moscow, 2/1 Barrikadnaya Str., bid. 1
References
1. Attman P, Alaupovic P. Lipid abnormalities in chronic renal insufficiency. Kidney Int Suppl 1991;31:16–23
2. Sarnak M, Levey A, Schoolwerth A et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108(17):2151–2169. doi: 10.1161/01.CIR.0000095676.90936.80
3. Moorhead J, Chan M, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 1982;2(8311):1309–1311. doi: 10.1016/s0140-6736(82)91513-6
4. Barr D, Russ E, Eder H. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med 1951;11(4):480–493. doi: 10.1016/0002-9343(51)90183-0
5. Kannell W, Castelli W, Gordon T et al. Serum cholesterol, lipoprotein and the risk of coronary heart disease. The Framingheim study. Ann Intern Med 1971;74(4):1–12. doi: 10.7326/0063-4819-74-11
6. Assmann G, Schulte H. The prospective cardiovascular Munster (PROCAM) study. Prevalence of hyperlipidemia in persons with hypertension and/or diabetic mellitus and the relationship to coronary heart disease. Am Heart J 1988;116(6):1713–1721. doi: 10.1026/0002-8703(88)90220-7
7. Gordon D, Probstfield J, Garrison R et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989;79(1):8–15. doi: 10.1161/01.cir.79.1.8
8. Khera A, Cuchel M, de la Llera-Moya M et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011;364(2):127–135. doi: 10.1056/NEJMoa1001689
9. Bauer L, Kern S, Rogacev K et al. HDL Cholesterol efflux capacity and cardiovascular events in patients with chronic kidney disease. J Am Coll Cardiol 2017;69(2):246–247. doi: 10.1016/j.jacc.2016.10.054
10. Kopecky C, Ebtehaj S, Genser B et al. HDL cholesterol efflux does not predict cardiovascular risk in hemodialysis patients. J Am Soc Nephrol 2017;28(3):769–775. doi: 10.1681/ASN.2016030262
11. Wang N, Silver D, Costet P, Tall A. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 2000;275(42):33053–33058. doi: 10.1074/jbc.M005438200
12. Von Eckardstein A, Nofer J, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001;21(1):13–27. doi: 10.1161/01.atv.21.1.13
13. Shen W, Azhar S, Kraemer B. SP-B1: a unique multifunctional receptor for cholesterol influx and efflux. Ann Rev Physiol 2018;10(80):95–116. doi: 10.1146/annurev-physiol-0213170121550
14. Kopecky C, Haidinger M, Grünberger R et al. Restoration of renal function does not correct impairment of uremia HDL properties. JASN 2015;26(3):565–575. doi: 10.1681/ASN.2013111219
15. Kawachi K, Kataoka H, Manabe S et al. Low HDL cholesterol as predictor chronic kidney disease progression. Heart Vessels 2019;39(9):1440–1455. doi: 10.1007/500380-019-013-75-4
16. Li Y, Zhao M, He D et al. HDL in diabetic nephropathy has less effect in endothelial repairing than diabetes without complications. Lipid Health Dis 2016;15:76. doi: 10.1186/s12944-016- 0246-z
17. Wang O, Ferreira D, Nelson S et al. Metabolic charectization of menopause: cross-sectional and longitudinal evidence. BMC Med 2018;16(1):17. doi: 10.1186/s12916-018-1008-8
18. Lopez-Hollin J, Cantarell C, Jimeno I et al. A form of lipoprotein A-1 is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am J Tranpl 2013;13(2):493–500. doi: 20.1111/j.1600-6143.2012.04335.x
19. Shen H, Xu Y, Lu J et al. Small low-dense lipoprotein cholesterol was associated with future cardiovascular events in chronic kidney disease patients. BMC Nephrology 2016;17:143. doi: 10.1186/s12882-016-0358-8
20. Tumur Z, Shimizu H, Enomoto A et al. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol 2010;31(5):435–441. doi: 10.1159/000299798
21. Noto H, Hara M, Karasawa K et al. Human plasma platelet-activating factor acetylhydrolase binds to all the murine lipoproteins, conferring protection against oxidative stress. Arterioscler Thromb Vasc Biol 2003;23(5):829–835. doi: 10.1161/01.ATV.0000067701.09398.18
22. Panichi V, Maggiore U, Taccola D et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than Creactive protein in haemodialysis patients. Nephrol Dial Transplant 2004;19(5):1154–1160. doi: 10.1093/ndt/gfh052
23. Bergstrom J, Heimburger O, Lindholm B, Qureshi A. Elevated serum C-reactive protein is a strong predictor of increased mortality and low serum albumin in hemodialysis patients. J Am Soc Nephrol (abstract) 1995;6:573
24. Wang G, Zhang Q, Zhao X et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipid Res 2020;19:204. doi: 10.1186/s12944_020_01382-9
25. Wang G, Dang J, Li J et al. The role of high-density lipoprotein in COVID-19. Frontiers in pharmacology 2021;12:720283. doi: 10.3389/fphaz.2021.720283
26. Tangirala R, Tsukamato K, Chin S et al. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 1999;100(17):1816–1822. doi: 10.1161/01.CIR.100.17.1816
27. Moradi H, Pahl M, Elahimehr R, Vaziri N. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl Res 2009;153(2):77–85. doi: 10.1016/j.trsl.2008.11.007
28. Kalantar-Zadeh K, Kopple J, Kamranpour N et al. HDLinflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int 2007;72(9):1149–1156. doi: 10.1038/sj.ki.5002491
29. Vaziri N, Moradi H, Pahl M et al. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int 2009;76(4):437–444. doi: 10.1038/ki.2009.177
30. Rubinow K, Henderson C, Robinson-Cohen C et al. Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int 2017;92(6):1526–1535. doi: 10.1016/j.kint.2017.05.020
31. Kimak E, Ksiazek A, Solski J. Disturbed lipoprotein composition in non-dialyzed, hemodialysis, continuous ambulatory peritoneal dialysis and post-transplant patients with chronic renal failure. Clin Chem Lab Med 2006;44(1):64–69. doi: 10.1515/CCLM.2006.013
32. Sunder-Plassmann G, Födinger M, Säemann MD. Cardiovascular disease mortality in kidney transplant recipients: no light at the end of the tunnel? Am J Kidney Dis 2012;59(6):754–757. doi: 10.1053/j.ajkd.2011.11.022
33. Ortiz A, Covic A, Fliser D et al. Board of the EURECA-m Working Group of ERA-EDTA. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 2014;383(9931):1831–1843. doi: 10.1016/S0140-6736(14)60384-6
34. Oterdoom LH, de Vries AP, van Ree RM et al. N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 2009;87(10):1562-1570. doi: 10.1097/TP.0b013e3181a4bb80
35. Kopecky C, Haidinger M, Birner-Grünberger R et al. Restoration of renal function does not correct impairment of uremic HDL properties. J Am Soc Nephrol 2015;26(3):565–575. doi: 10.1681/ASN.2013111219
36. Kilpatrick RD, McAllister CJ, Kovesdy CP et al. Association between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol 2007;18(1):293–303. doi: 10.1681/ASN.2006070795
37. Annema W, Dikkers A, de Boer J et al. HDL Cholesterol efflux predicts graft failure in renal transplant recipients. J Am Soc Nephrol 2016;27(2):595–603. doi: 10.1681/ASN.2014090857
38. Honda H, Hirano T, Ueda M et al. Associations among apolipoproteins, oxidized high-density lipoprotein and cardiovascular events in patients on hemodialysis. PLoS One 2017;12(5):e0177980. doi: 10.1371/journal.pone.0177980
39. Van Lenten BJ, Hama SY, de Beer FC et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 1995;96(6):2758–2767. doi: 10.1172/JCI118345
40. Weichhart T, Kopecky C, Kubicek M et al. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol 2012;23(5):934–947. doi: 10.1681/ASN.2011070668
41. Sorrentino SA, Besler C, Rohrer L et al. Endothelialvasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 2010;121(1):110- 122. doi: 10.1161/CIRCULATIONAHA.108.836346
42. Riwanto M, Rohrer L, Roschitzki B et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 2013;127(8):891–904. doi: 10.1161/CIRCULATIONAHA.112.108753
43. Wang K, Zelnick LR, Hoofnagle AN et al. HFM Study. Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 2018;13(8):1225–1233. doi: 10.2215/CJN.11321017
44. Besler C, Heinrich K, Rohrer L et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 2011;121(7):2693– 2708. doi: 10.1172/JCI42946
45. Boes E, Fliser D, Ritz E et al. Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 2006;17(2):528–536. doi: 10.1681/ASN.2005070733
46. Kollerits B, Krane V, Drechsler C et al. German Diabetes and Dialysis Study Investigators. Apolipoprotein A-IV concentrations and clinical outcomes in haemodialysis patients with type 2 diabetes mellitus-a post hoc analysis of the 4D Study. J Intern Med 2012;272(6):592–600. doi: 10.1111/j.1365-2796.2012.02585.x
47. Zewinger S, Kleber ME, Rohrer L et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur Heart J 2017;38(20):1597–1607. doi: 10.1093/eurheartj/ehx118
48. Schlesinger S, Sonntag SR, Lieb W, Maas R. Asymmetric and symmetric dimethylarginine as risk markers for total mortality and cardiovascular outcomes: a systematic review and metaanalysis of prospective studies. PLoS One 2016;11(11):e0165811. doi: 10.1371/journal.pone.0165811
49. Zhou LL, Hou FF, Wang GB et al. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int 2009;76(11):1148–1160. doi: 10.1038/ki.2009.322
50. Waddington CH. Basic ideas of biology. Moscow, Mir, 1970, p. 11–38
51. Susztak K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J Am Soc Nephrol 2014;25(1):10–17. doi: 10.1681/ASN.2013050461
52. Reddy MA, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 2015;88(2):250–261. doi: 10.1038/ki.2015.148
53. Au-Yeung KK, Woo CW, Sung FL et al. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res 2004;94(1):28–36. doi: 10.1161/01.RES.0000108264.67601.2C
54. Bostom AG, Carpenter MA, Kusek JW et al. Homocysteinelowering and cardiovascular disease outcomes in kidney transplant recipients: primary results from the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Circulation 2011;123(16):1763– 1770. doi: 10.1161/CIRCULATIONAHA.110.000588
55. Wing MR, Devaney JM, Joffe MM et al. Chronic Renal Insufficiency Cohort (CRIC) Study. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol Dial Transplant 2014;29(4):864–872. doi: 10.1093/ndt/gft537
56. Bomsztyk K, Denisenko O. Epigenetic alterations in acute kidney injury. Semin Nephrol 2013;33(4):327–340. doi: 10.1016/j.semnephrol.2013.05.005
57. Kato M, Natarajan R. Diabetic nephropathy-emerging epigenetic mechanisms. Nat Rev Nephrol 2014;10(9):517–530. doi: 10.1038/nrneph.2014.116
58. Baek D, Villén J, Shin C et al. The impact of microRNAs on protein output. Nature 2008;455(7209):64–71. doi: 10.1038/nature07242
59. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035
60. John B, Enright AJ, Aravin A et al. Human microRNA targets. PLoS Biol 2004;2(11):e363. doi: 10.1371/journal. pbio.0020363
61. Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol 2011;22(2):86– 92. doi: 10.1097/MOL.0b013e3283428d9d
62. Allen RM, Marquart TJ, Albert CJ et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med 2012;4(9):882–895. doi: 10.1002/emmm.201201228
63. Canfrán-Duque A, Ramírez CM, Goedeke L et al. microRNAs and HDL life cycle. Cardiovasc Res 2014;103(3):414–422. doi: 10.1093/cvr/cvu140
64. Trionfini P, Benigni A. MicroRNAs as master regulators of glomerular function in Health and disease. J Am Soc Nephrol 2017;28(6):1686–1696. doi: 10.1681/ASN.2016101117
65. Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 2011;300(3):F602–610. doi: 10.1152/ajprenal.00727.2010
66. Kato M, Park JT, Natarajan R. MicroRNAs and the glomerulus. Exp Cell Res 2012;318(9):993–1000. doi: 10.1016/j.yexcr.2012.02.034
67. Gebeshuber CA, Kornauth C, Dong L et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 2013;19(4):481–487. doi: 10.1038/nm.3142
68. Huang Z, Zhang Y, Zhou J, Zhang Y. Urinary exosomal miR193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. Biomed Res Int 2017;7298160. doi: 10.1155/2017/7298160
69. Khoshmirsafa M, Kianmehr N, Falak R et al. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int J Rheum Dis 2019;22(3):458–467. doi: 10.1111/1756-185X.13410
70. Hashad DI, Abdelmagid MH, Elsherif SH. microRNA146a expression in lupus patients with and without renal complications. J Clin Lab Anal 2012;26(1):35–40. doi: 10.1002/jcla.20501
71. Tangtanatakul P, Klinchanhom S, Sodsai P et al. Downregulation of let-7a and miR-21 in urine exosomes from lupus nephritis patients during disease flare. Asian Pac J Allergy Immunol 2019;37(4):189–197. doi: 10.12932/AP-130318-0280
72. Solé C, Moliné T, Vidal M et al. An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells 2019;8(8):773. doi: 10.3390/cells8080773
73. Ichii O, Otsuka-Kanazawa S, Horino T et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One 2014;9(10):e110383. doi: 10.1371/journal.pone.0110383
74. Kouri NM, Stangou M, Lioulios G et al. Serum levels of miR148b and Let-7b at diagnosis may have important impact in the response to treatment and long-term outcome in IgA nephropathy. J Clin Med 2021;10(9):1987. doi: 10.3390/jcm10091987
75. Barratt J, Pawluczyk I, Selvaskandan H. Clinical application of microRNAs in glomerular diseases. Nephrol Dial Transplant 2022;gfac230. doi: 10.1093/ndt/gfac230
76. Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 2019;18(6):421–446. doi: 10.1038/s41573-019-0017-4
77. Machin N, Ragni MV. An investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia A and B. J Blood Med 2018;9:135–140. doi: 10.2147/JBM.S159297
78. Shepherd J, Kastelein JJ, Bittner V et al. TNT (Treating to New Targets) Investigators. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J Am Coll Cardiol 2008;51(15):1448–1454. doi: 10.1016/j.jacc.2007.11.072
79. Fellström BC, Jardine AG, Schmieder RE et al. AURORA Study Group. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 2009;360(14):1395–1407. doi: 10.1056/NEJMoa0810177
80. Baigent C, Landray MJ, Reith C et al. SHARP Investigators. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 2011;377(9784):2181–2192. doi: 10.1016/S0140-6736(11)60739-3
81. Nikolic D, Nikfar S, Salari P. Lipid and Blood Pressure MetaAnalysis Collaboration Group. Effects of statins on lipid profile in chronic kidney disease patients: a meta-analysis of randomized controlled trials. Curr Med Res Opin 2013;29(5):435–451. doi: 10. 1185/03007995.2013.779237
82. Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016;173:30–57. doi: 10.1016/j.trsl.2016.02.008
83. Ridker PM, Danielson E, Fonseca FA et al. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359(21):2195–2207. doi: 10.1056/NEJMoa0807646
84. Moradi H, Streja E, Kashyap ML et al. Elevated high- density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol Dial Transplant 2014;29(8):1554–1562. doi: 10.1093/ndt/gfu022
85. Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis 2014;24(10):1057–1066. doi: 10.1016/j.numecd.2014.05.009
86. Davidson MH, Armani A, McKenney JM, Jacobson TA. Safety considerations with fibrate therapy. Am J Cardiol 2007;99(6A):3C–18C. doi: 10.1016/j.amjcard.2006.11.016
87. Rubins HB, Robins SJ, Collins D et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999;341(6):410–418. doi: 10.1056/NEJM199908053410604
88. Guan Y. Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol 2004;15(11):2801–2815. doi: 10.1097/01.ASN.0000139067.83419.46
89. Muto S, Aiba A, Saito Y et al. Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum Mol Genet 2002;11(15):1731–1742. doi: 10.1093/hmg/11.15.1731
90. Prichard S. Management of hyperlipidemia in patients on peritoneal dialysis: current approaches. Kidney Int Suppl 2006;103:S115–S117. doi: 10.1038/sj.ki.5001926
91. Heimbürger O. Statins and lipid-lowering strategies in PD. In book Peritoneal Dialysi. Ed. C Ronco, M Rosner, C Crepaldi. Karger, Vicenza. 2012, 178, 106–110. doi: 10.1159/000337828
92. Sharp Collaborative Group. Study of Heart and Renal Protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am Heart J 2010;160(5):785–794. e10. doi: 10.1016/j.ahj.2010.08.012
93. Jardine A, Holdaas H, Fellström B et al. Fluvastatin prevents cardiac death and myocardial infarction in renal transplant recipients: post-hoc subgroup analyses of the ALERT Study. Am J Transplant 2004;4(6):988–995. doi: 10.1111/j.1600-6143.2004. 00445.x
94. Holdaas H, Fellström B, Cole E et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant 2005;5(12):2929–2936. doi: 10.1111/j.1600-6143.2005.01105.x
95. Mach F, Ray K, Wiklund O et al. Adverse effects of statin therapy: perception vs. the evidence – focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur Heart J 2018;39(27):2526–2539. doi: 10.1093/eurheartj/ehy182
96. Filler G, Taheri S, McIntyre C et al. Chronic kidney disease stage affects small, dense low-density lipoprotein but not glycated low-density lipoprotein in younger chronic kidney disease patients: a cross-sectional study. Clin Kidney J 2018;11(3):383–388. doi: 10.1093/ckj/sfx115
97. Suarez-Alvarez B, Morgado-Pascual JL, Rayego-Mateos S et al. Inhibition of bromodomain and extraterminal domain family proteins ameliorates experimental renal damage. J Am Soc Nephrol 2017;28(2):504–519. doi: 10.1681/ASN.2015080910
98. Zhou X, Fan LX, Peters DJ et al. Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Hum Mol Genet 2015;24(14):3982–3993. doi: 10.1093/hmg/ddv136
99. Wasiak S, Tsujikawa LM, Halliday C et al. Benefit of Apabetalone on Plasma Proteins in Renal Disease. Kidney Int Rep 2017;3(3):711–721. doi: 10.1016/j.ekir.2017.12.001
100. Kulikowski E, Halliday C, Johansson J et al. Apabetalone mediated epigenetic modulation is associated with favorable kidney function and alkaline phosphatase profile in patients with chronic kidney disease. Kidney Blood Press Res 2018;43(2):449– 457. doi: 10.1159/000488257
101. Kalantar-Zadeh K, Schwartz GG, Nicholls SJ et al. BETonMACE Investigators. Effect of apabetalone on cardiovascular events in diabetes, ckd, and recent acute coronary syndrome: results from the BETonMACE randomized controlled trial. Clin J Am Soc Nephrol 2021;16(5):705–716. doi: 10.2215/CJN.16751020
102. Xiong C, Masucci MV, Zhou X et al. Pharmacological targeting of BET proteins inhibits renal fibroblast activation and alleviates renal fibrosis. Oncotarget 2016;7(43):69291–69308. doi: 10.18632/oncotarget.12498
103. Witasp A, Luttropp K, Qureshi AR et al. Longitudinal genome-wide DNA methylation changes in response to kidney failure replacement therapy. Sci Rep 2022;12(1):470. doi: 10.1038/s41598-021-04321-5
104. Sabatine MS, Giugliano RP, Wiviott SD et al. Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372(16):1500– 1509. doi: 10.1056/NEJMoa1500858
105. Leren T. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004;65(5):419–422. doi: 10.1111/j.0009-9163.2004.0238.x
106. Kosmas C, Arjona C, DeJesus E et al. Alirocumab in the treatment of hypercholesterolemia. Clin Med Rev Ther 2017;9(1):1–5. doi: 10.1177/117925817690768
107. Kosmas C, Pantou D, Sourlas A et al. New and emerging lipid-modifying drugs to lower LDL cholesterol. Drugs Context 2021;10:2021-8-3, doi: 10.7573/dic.2021-8-3
108. Nissen S, Lincoff M, Brennan D et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N Engl J Med 2023;388(15):1353–1364. doi: 10.1056/NEJMoa2215024
109. Cicero A, Pontremoli R, Fogacci F et al. Effect of Bempedoic acid on serum uric acid and related outcomes: a systematic review and meta-analysis of the available phase 2 and phase 3 clinical studies. Drug Saf 2020;43(8):727–736. doi: 10.1007/s40264-020-00931-6
110. Keaney J. Bempedoic Acid and the prevention of cardiovascular disease. New Engl J Med 2023;388(15):1427–1430. doi: 10.1056/NEJMe2300793
111. Ray K, Wright R, Kallend D et al. Two phase 3 trials of Inclisiran in patients with elevated LDL cholesterol. N Engl J Med 2020;382(16):1507–1519. doi: 10.1056/NEJMoa1912387
112. Dyrbuś K, Gąsior M, Penson P et al. Inclisiran-new hope in the management of lipid disorders? J Clin Lipidol 2020;14(1):16– 27. doi: 10.1016/j.jacl.2019.11.001
113. Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol 2008;59 Suppl 7:31–55
114. German C, Shapiro M. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 2020;34(1):1–9. doi: 10.1007/s40259-019-00399-6
115. Kersten S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol 2017;13(12):731–739. doi: 10.1038/nrendo.2017.119
116. Biterova E, Esmaeeli M, Alanen H et al. Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease. Sci Rep 2018;8(1):6752. doi: 10.1038/s41598-018-25237-7
117. Li N, Wang X, Xu Y et al. Identification of a novel liver x receptor agonist that regulates the expression of key cholesterol homeostasis genes with distinct pharmacological characteristics. Mol Pharmacol 2017;91(4):264–276. doi: 10.1124/mol.116.105213
118. Kersten S. Bypassing the LDL receptor in familial hypercholesterolemia. N Engl J Med 2020;383(8):775–776. doi: 10.1056/NEJMe2023520
119. Graham M, Lee R, Brandt T et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med 2017;377(3):222–232. doi: 10.1056/NEJMoa1701329
120. Nurmohamed N, Dallinga-Thie G, Stroes L et al. Targeting apoC-III and ANGPTL3 in the treatment of hypertriglyceridemia. Expert Rev Cardiovasc Ther 2020;18(6):355–361. doi: 10.1080/14779072.2020.1768848
121. Akdim E, Visser M, Tribble D et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol 2010;105(10):1413–1419. doi: 10.1016/j.amjcard.2010.01.003
122. Vuorio A, Tikkanen M, Kovanen P. Inhibition of hepatic microsomal triglyceride transfer protein – a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc Health Risk Manag 2014;10:263–270. doi: 10.2147/VHRM.S36641
123. Gouni-Berthold I, Alexander V, Yang O et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2021;9(5):264–275. doi: 10.1016/S2213-8587(21)00046-2
124. Bodzioch M, Orsó E, Klucken J et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22(4):347–351. doi: 10.1038/11914
125. Rust S, Rosier M, Funke H et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999;22(4):352–355. doi: 10.1038/11921
126. Du XM, Kim MJ, Hou L et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015;116(7):1133–1142. doi: 10.1161/CIRCRESAHA.116.305485
127. Vaziri N, Moradi H, Pahl M et al. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int 2009;76(4):437–444. doi: 10.1038/ki.2009.177
128. Navab M, Anantharamaiah G, Garber H et al. Oral administration of an apoA-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002;105(3):290–292. doi: 10.1161/hc0302.103711
129. Navab M, Ruchala P, Waring A et al. A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids. J Lipid Res, 2009, 50(8), 1538–1547. doi: 10.1194/jlr.M800539-JLR200
Review
For citations:
Ermolenko V.M. Lipoprotein dysfunction in patients with chronic kidney disease (CKD). Pathogenesis and treatment of CKD dyslipidemia (literature review). Nephrology (Saint-Petersburg). 2024;28(1):13-29. (In Russ.) https://doi.org/10.36485/1561-6274-2024-28-1-13-29. EDN: BTZUND