Preview

Nephrology (Saint-Petersburg)

Advanced search

RENAL ALLOGRAFT REJECTION MECHANISMS AND IMMUNOTOLERANCE

Abstract

The review summarizes basic causes and mechanisms of renal allograft rejection, describes the modern concept of immune tolerance formation.

About the Authors

A. V. Vatazin
Moscow regional research and clinical institute named after M.F. Vladimirsky
Russian Federation

Andrey V. Vatazin, MD, PhD, Professor of medicine, DMedSci. 

Head of the Department of Transplantation, Nephrology and Surgical hemocorrection. 

Adress: 129110, Moscow, Shchepkin Str., 61/2, building 6. 



A. V. Kildjushevskiy,
Moscow regional research and clinical institute named after M.F. Vladimirsky
Russian Federation

Alexander V. Kildushevskiy, Prof, MD, PhD, DMedSci.

Leading researcher of the department of Surgical hemocorrection and detoxifi cation.

Adress: 129110 Russia, Moscow, Shchepkina st., 61/2, build. 11.



V. A. Fedulkina
Moscow regional research and clinical institute named after M.F. Vladimirsky
Russian Federation

Veronica A. Fedulkina MD, PhD,

Senior Researcher of the Surgical department of Transplantation and Dialysis. 

Adress: 129110 Russia, Moscow, Shchepkina st., 61/2, build. 6. 



A. P. Faenko
Moscow regional research and clinical institute named after M.F. Vladimirsky
Russian Federation

Alexander P. Faenko, Senior Assistant of the Department of Clinical Transfusion.

Adress: 129110 Russia, Moscow, Shchepkina st., 61/2, build. 8. 



References

1. Столяревич ЕС, Артюхина ЛЮ, Ким ИГ и др. Морфологические особенности позднего отторжения трансплантированной почки и их прогностическое значение. Вестн трансплантологии и искусственных органов. 2014; 16(2): 30-38 [Stoliarevich ES, Artiuhina LIU, Kim IG i dr. Morfologicheskie osobennosti pozdnego ottorzheniia transplantirovannoi` pochki i ikh prognosticheskoe znachenie. Vestn transplantologii i iskusstvenny`kh organov. 2014; 16(2): 30-38]

2. Лубенников АЕ, Трушкин РН, Артюхина ЛЮ. Современные взгляды на проблему удаления почечного трансплантата. Московск хирур журн 2014; 4: 49-56 [Lubennikov AE, Trushkin RN, Artyukhina LY Sovremennye vzglyady na problemu udaleniya pochechnogo transplantata. Moskovskii khirurgicheskii zhurnal. 2014; 4: 49-56]

3. Johnston O, Rose C, Landsberg D et al. Nephrectomy after transplant failure: current practice and outcomes Am J Transplant 2007; 7(8): 1961-1967. doi: 10.1111/j.1600-6143.2007.01884.x

4. Столяр АГ, Будкарь ЛН, Климушева НФ и др. Улучшение результатов трансплантации почки. Вестн трансплантологии и искусственных органов 2014; 4: 55-61 [Stoliar AG, Budkar` LN, Climusheva NF i dr. Uluchshenie rezul`tatov transplantatcii pochki. Vestn transplantologii i iskusstvenny`kh organov 2014; 4: 55-61]

5. O'Leary JG, Samaniego M, Barrio MC et al. The Influence of Immunosuppressive Agents on the Risk of De Novo DonorSpecific HLA Antibody Production in Solid Organ Transplant Recipients. Transplantation. 2016; 100(1): 39-53 [doi: 10.1097/TP.0000000000000869]

6. Thorsby E. A short history of HLA. Tissue Antigens 2009; 74(2): 101-116 doi: 10.1111/j.1399-0039.2009.01291.x

7. Дмитриева НГ, Яковчик ОН, Ватазин АВ и др. Система гистосовместимости при трансплантации почки. Альманах клинической медицины 2014; 31: 83-87 [Dmitrieva NG, Iakovchik ON, Watazin AV i dr. Sistema gistosovmestimosti pri transplantatcii pochki. Al`manakh clinicheskoi` meditciny` 2014; 31: 83-87]

8. Данович Габриэль М. Трансплантация почки. ред. ЯГ Мойсюк ГЭОТАР-Медиа, М., 2013; 23-138 [Danovitch Gabriel M Handbook of kidney transplantation. ed. YG Moisyuk GEOTARMedia, M, 2013; 23-138.]

9. Caron E, Kowalewski DJ, Chiek Koh C et al. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2015; 14(12): 3105-3117. doi: 10.1074/mcp.M115.052431

10. Wei RQ, Schwartz CF, Lin H et al. Anti-TNF antibody modulates cytokine and MHC expression in cardiac allografts. J Surg Res 1999; 81(2): 123-128. doi: 10.1006/jsre.1998.5303

11. Pabon MA, Navarro CE, Martin R et al. Minor histocompatibility antigens as risk factor for poor prognosis in kidney transplantation. Transplant Proc 2011; 43(9): 3319-3323. doi: 10.1016/j.transproceed.2011.09.007

12. Breman E, van Miert PP, van der Steen DM et al. HLA monomers as a tool to monitor indirect allorecognition. Transplantation 2014; 97(11): 1119-1127. doi: 10.1097/TP.0000000000000113

13. Harper SJ, Ali JM, Wlodek E et al. CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc Nati Acad Sci U S A 2015; 112(41): 12788-12793. doi: 10.1073/pnas.1513533112

14. Ali J, Bolton E, Saeb-Parsy K. et al. Targeting indirect pathway CD4 T-cell alloresponses in the prevention of chronic transplant rejection. Lancet 2015; 385(1): 17. doi: 10.1016/S01406736(15)60332-4

15. Lin CM, Gill RG. Direct and indirect allograft recognition: pathways dictating graft rejection mechanisms. Curr Opin Organ Transplant 2016; 21(1): 40-44. doi: 10.1097/MOT.0000000000000263

16. Taylor AL, Negus SL, Negus M. et al. Pathways of helper CD4 T cell allorecognition in generating alloantibody and CD8 T cell alloimmunity. Transplantation 2007; 83(7): 931-937. doi: 10.1097/01.tp.0000257960.07783.e3

17. Weist BJ, Schmueck M, Fuehrer H. et al. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol 2014; 203(6): 395-408. doi: 10.1007/s00430-014-0348-z

18. Phillips S, Kapp M, Crowe D. et al. Endothelial activation, lymphangiogenesis, and humoral rejection of kidney transplants. Hum Pathol 2016;51:86-95. doi: 10.1016/j.humpath.2015.12.020

19. Esposito P, Grosjean F, Rampino T et al. Costimulatory pathways in kidney transplantation: pathogenetic role, clinical significance and new therapeutic opportunities. Int Rev Immunol 2014; 33(3): 212-233. doi: 10.3109/08830185.2013.829470

20. Vogel I, Kasran A, Cremer J. et al. CD28/CTLA-4/B7 costimulatory pathway blockade affects regulatory T-cell function in autoimmunity. Eur J Immunol 2015; 45(6): 1832-1841. doi: 10.1002/eji.201445190

21. Berg M, Zavazava N. Regulation of CD28 expression on CD8+ T cells by CTLA-4. J Leukoc Biol 2008; 83(4): 853-863. doi: 10.1189/jlb.0107065

22. Linsley PS, Brady W, Urnes M. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561-569. doi: 10.1084/jem.174.3.561

23. Ford ML, Larsen CP. Translating costimulation blockade to the clinic: lessons learned from three pathways. Immunol Rev 2009; 229 (1): 294-306. doi: 10.1111/j.1600-065X.2009.00776.x.

24. Pilat N, Sayegh MH, Wekerle T. Costimulatory pathways in transplantation. Semin Immunol. 2011; 23(4): 293-303. doi: 10.1016/j.smim.2011.04.002

25. Harada H, Salama AD, Sho M et al. The role of the ICOSB7h T cell costimulatory pathway in transplantation immunity. J Clin Invest 2003; 112(2): 234-243. doi: 10.1172/jci200317008

26. Dai H, Peng F, Lin M. et al. Anti-OX40L monoclonal antibody prolongs secondary heart allograft survival based on CD40/CD40L and LFA-1/ICAM-1 blockade. Transpl Immunol 2015; 32(2):84-91. doi: 10.1016/j.trim.2015.01.001

27. Wells AD, Walsh MC, Sankaran D et al. T cell effector function and anergy avoidance are quantitatively linked to cell division. J Immunol 2000; 165(5): 2432-2443. doi: 10.4049/ jimmunol.165.5.2432

28. del Rio ML, Buhler, Gibbons C et al. PD-1/PD-L1, PD-1/ PD-L2, and other co-inhibitory signaling pathways in transplantation. Transpl Int 2008; 21(11): 1015-1028. doi: 10.1111/j.14322277.2008.00726.x

29. Masson P, Henderson L, Chapman JR et al. Belatacept for kidney transplant recipients. Cochrane Database Syst Rev 2014; 11: 1-65. doi: 10.1002/14651858.CD010699.pub2

30. Rančić N., Dragojević-Simić V., Vavić N et al. Tacrolimus concentration/dose ratio as a therapeutic drug monitoring strategy: the influence of gender and comedication. Vojnosanitetski Pregl 2015; 72(9): 813-822. doi:10.2298/VSP140905005R

31. Sarwal MM. Fingerprints of transplant tolerance suggest opportunities for immunosuppression minimization. Clin Biochem 2016; 49(4-5): 404-410. doi: 10.1016/j.clinbiochem.2016.01.007

32. Gracon AS, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75(8): 887-894. doi: 10.1016/j.humimm.2014.06.015

33. LaFlam TN, Seumois G, Miller CN et al. Identification of a novel cis-regulatory element essential for immune tolerance. J Exp Med 2015; 212(12): 1993-2002. doi: 10.1084/jem.20151069

34. Yamano T, Steinert M, Klein L. Thymic B Cells and Central T Cell Tolerance. Front Immunol 2015; 6: 376. doi: 10.3389/ fimmu.2015.00376

35. Laan M, Peterson P. The many faces of aire in central tolerance. Front Immunol 2013; 4: 326. doi: 10.3389/ fimmu.2013.00326

36. Delgoffe GM, Powell JD. Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Mol Immunol 2015; 68: 492-496. doi: 10.1016/j.molimm.2015.07.026

37. Asashima H, Tsuboi H, Takahashi H et al. The anergy induction of M3 muscarinic acetylcholine receptor-reactive CD4+ T cells suppresses experimental sialadenitis-like Sjogren’s syndrome. Arthritis Rheumatol 2015; 67(8): 2213-2225. doi: 10.1002/art.39163

38. O’Konek JJ, Kato S, Takao S et al. β-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res 2013; 19(16): 4404-4411. doi: 10.1158/1078-0432.CCR-12-2169

39. Bandyopadhyay S, Montagna C, Macian F. Silencing of the Il2 gene transcription is regulated by epigenetic changes in anergic T cells. Eur J Immunol 2012; 42(9): 2471-2483. doi: 10.1002/eji.201142307

40. Akiyama K, Chen C, Wang D et al. Mesenchymal-stemcellinduced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 2012; 10(5): 544-555. doi: 10.1016/j.stem.2012.03.007

41. Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 2011; 1217: 45-59. doi: 10.1111/j.1749-6632.2010.05919.x

42. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity Immunol Rev 2010; 236: 219-242. doi: 10.1111/j.1600-065X.2010.00923.x

43. McCarthy DP, Bryant J, Galvin JP. Tempering allorecognition to induce transplant tolerance with chemically modified apoptotic donor cells. Am J Transplant 2015; 15(6): 1475-1483. doi: 10.1111/ajt.13237

44. Moreau A, Varey E, Beriou G et al. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials. Front Immunol 2012; 3: 218. doi: 10.3389/ fimmu.2012.00218

45. Hall BM, Tran GT, Robinson CM et al. Induction of antigen specific CD4(+)CD25(+)Foxp3(+)T regulatory cells from naive natural thymic derived T regulatory cells. Int Immunopharmacol 2015; 28(2): 875-886. doi: 10.1016/j.intimp.2015.03.049

46. Vela-Ojeda J, Montiel-Cervantes L, Granados-Lara P et al. Role of CD4+CD25+highFoxp3+CD62L+ regulatory T cells and invariant NKT cells in human allogeneic hematopoietic stem cell transplantation. Stem Cells Dev 2010; 19(3): 333-340. doi: 10.1089/scd.2009.0216

47. Lal G, Kulkarni N, Nakayama Y et al. Bromberg J.S. IL-10 from marginal zone precursor B cells controls the differentiation of Th17, Tfh and Tfr cells in transplantation tolerance. Immunol Lett 2016; 170: 52-63. doi: 10.1016/j.imlet.2016.01.002

48. Kawai T, Cosimi AB, Wee SL et al. Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 2002; 73(11): 1757-1764. doi: 10.1097/00007890-200206150-00011

49. Nadazdin O, Abrahamian G, Boskovic S et al. Stem cell mobilization and collection for induction of mixed chimerism and renal allograft tolerance in cynomolgus monkeys. J Surg Res 2011; 168(2): 294-300. doi: 10.1016/j.jss.2010.02.027

50. Peters JH, Hilbrands LB, Koenen HJ et al. Ex vivo generation of human alloantigen-specific regulatory T cells from CD4(pos)CD25(high) T cells for immunotherapy. PLoS One 2008; 3(5): e2233. doi: 10.1371/journal.pone.0002233

51. Safinia N, Vaikunthanathan T, Fraser H et al. Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget 2016; 7(7): 75637577. doi: 10.18632/oncotarget.6927

52. Thorp EB, Stehlik C, Ansari MJ. T-cell exhaustion in allograft rejection and tolerance. Curr Opin Organ Transplant 2015; 20(1): 37-42. doi: 10.1097/MOT.0000000000000153

53. Valujskikh A, Li XC. Memory T cells and their exhaustive differentiation in allograft tolerance and rejection. Curr Opin Organ Transplant 2012; 17(1): 15-19. doi: 10.1097/ MOT.0b013e32834ee443

54. Xia CQ, Campbell KA, Clare-Salzler MJ. Extracorporeal photopheresis-induced immune tolerance: a focus on modulation of antigen-presenting cells and induction of regulatory T cells by apoptotic cells. Curr Opin Organ Transplant 2009; 14(4): 338343. doi: 10.1097/MOT.0b013e32832ce943

55. Кильдюшевский АВ, Федулкина ВА, Фомина ОА, Фомин АМ. Применение экстракорпоральной фотохимиотерапии при лимфомах кожи и трансплантации солидных органов. Альманах клин мед 2014; 30: 61-69 [Kil`diushevskii` AV, Fedulkina VA, Fomina OA, Fomin AM. Primenenie e`kstrakorporal`noi` fotohimioterapii pri limfomakh kozhi i transplantatcii solidny`kh organov. Al`manakh clin med 2014; 30: 61-69]


Review

For citations:


Vatazin A.V., Kildjushevskiy, A.V., Fedulkina V.A., Faenko A.P. RENAL ALLOGRAFT REJECTION MECHANISMS AND IMMUNOTOLERANCE. Nephrology (Saint-Petersburg). 2016;20(6):33-41. (In Russ.)

Views: 8632


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)