Preview

Nephrology (Saint-Petersburg)

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The role of soy proteins in cardioprotection in Wistar rats feeded on a high fat diet

https://doi.org/10.36485/1561-6274-2025-29-3-87-95

EDN: MLBTUZ

Abstract

BACKGROUND. Obesity is considered a traditional risk factor for cardiovascular disease and chronic kidney disease (CKD). The cardioprotective and nephroprotective effects of soy diet in CKD are known. The effect of a diet containing soy proteins on the cardiovascular system in obese patients has been virtually unstudied. In this regard, the purpose of the work was to test the hypothesis about the cardioprotective effect of the soy diet in Wistar rats fed a diet high in animal fat. MATERIALS AND METODS. Three groups of Wistar rats were studied. The first (control) received laboratory food containing 20 % animal proteins and 15 % (calorie content) fats; the second is a diet with a high (50 % calorie) content of beef fat (HFD) and 20 % casein; third – HFD and 20 % soy protein SUPRO-760. After 2 months, systolic blood pressure (BP), biochemical blood parameters, albumin in urine were determined, insulin resistance, glucose tolerance tests, and histological examination of the myocardium was performed. RESULTS. HFD in combination with casein led to an increase in BP, myocardial mass index (IMM), visceral obesity, increased glucose levels, lipid metabolism disorders, and albuminuria. In rats of this group, an increase in interstitial and perivascular fibrosis, cardiomyocyte thickness, and intramyocardial vessel walls was noted. In rats on high-fat diet with soy protein, insulin resistance, glucose tolerance, lipid spectrum disorders, albuminuria, increased BP, and myocardial remodeling were less pronounced. CONCLUSION. The introduction of soy proteins into a high-fat diet reduces visceral obesity, improves carbohydrate and lipid metabolism, has a hypotensive and cardioprotective effect.

About the Authors

O. N. Beresneva
First St. Petersburg State University named after Academician I.P. Pavlov
Russian Federation

Senior Researcher Olga N. Beresneva, PhD, Research Institute of Nephrology, Laboratory of Clinical Renal Physiology

197022, St. Petersburg, L. Tolstogo str., 17, building 54

Tel.: (812) 346-39-26



G. T. Ivanova
I.P.Pavlov Institute of Physiology of the Russian Academy of Sciences
Russian Federation

Leading researcher Galina T. Ivaniva, PhD, Laboratory of Physiology of Cardiovascular and Lymphatic Systems

199034, St. Petersburg, nab. Makarova, 6

Tel.: 8 (812) 328-07-01



E. O. Bogdanova
First St. Petersburg State University named after Academician I.P. Pavlov
Russian Federation

Researcher Evdokia O. Bogdanova, MD, PhD, Research Institute of Nephrology, Laboratory of Biochemical Homeostasis

197022, St. Petersburg, L. Tolstogo str., 17, building 54



A. G. Kucher
First St. Petersburg State University named after Academician I.P. Pavlov
Russian Federation

Prof. Anatoly G. Kucher, MD, PhD, DMedSci, Department of Propeadeutics of Internal Diseases with Clinic named after Academician M.D. Tushinsky

197022, St. Petersburg, L. Tolstogo str., 17, building 54



References

1. Fu X, Ren H, Xie J et al. Association of nighttime masked uncontrolled hypertension with left ventricular hypertrophy and kidney function among patients with chronic kidney disease not receiving dialysis. JAMA Netw Open 2022; 5(5): e2214460. doi: 10.1001/jamanetworkopen.2022.14460

2. Adair T, Lopez AD. The role of overweight and obesity in adverse cardiovascular disease mortality trends: an analysis of multiple cause of death data from Australia and the USA. BMC Med 2020; 18(1):199. doi: 10.1186/s12916-020-01666-y

3. Aiumtrakul N, Kittithaworn A, Supasyndh O et al. Association of body mass index with kidney function and mortality in high cardiovascular risk population: A nationwide prospective cohort study. Nephrology (Carlton) 2022; 27(1):25–34. doi: 10.1111/nep.13970

4. Adair KE, Bowden RG, Funderburk LK et al. Metabolic health, obesity, and renal function: 2013-2018 National Health and Nutrition Examination Surveys. Life (Basel) 2021; 11(9):888. doi: 10.3390/life11090888

5. Abdul WR, Cohen RV, le Roux CW. Recent advances in the treatment of patients with obesity and chronic kidney disease. Ann Med 2023; 55(1):2203517. doi: 10.1080/07853890.2023.2203517

6. Mackowiak-Lewandowicz K, Ostalska-Nowicka D, Zaorska K, Kaczmarek E, Zachwieja J, Witt M, Nowicki M. Chronic kidney disease predictors in obese adolescents. Pediatr Nephrol 2022; 37(10):2479–2488. doi: 10.1007/s00467-021-05403-2

7. Chen Y, Dabbas W, Gangemi A et al. Obesity management and chronic kidney disease. Semin Nephrol 2021; 41(4):392–402. doi: 10.1016/j.semnephrol.2021.06.010

8. Tsuboi N, Okabayashi Y. The renal pathology of obesity: structure-function correlation. Semin Nephrol 2021; 41(4):296–306. doi: 10.1016/j.semnephrol.2021.06.002

9. Ahmed N, Dalmasso C, Turner MB et al. From fat to filter: the effect of adipose tissue-derived signals on kidney function. Nat Rev Nephrol 2025; 21(6):417–434. doi: 10.1038/s41581-025-00950-5

10. Akcabag E, Bayram Z, Kucukcetin IO et al. Functional effects of visfatin in isolated rat mesenteric small resistance arteries. Eur J Pharmacol 2021;908:174333. doi: 10.1016/j.ejphar.2021.174333

11. Engin A. Endothelial dysfunction in obesity and therapeutic targets. Adv Exp Med Biol 2024; 1460:489–538. doi: 10.1007/978-3-031-63657-8_17

12. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017; 18(6):1321. doi: 10.3390/ijms18061321

13. Nguyen TMD. Adiponectin: role in physiology and pathophysiology. Int J Prev Med 2020;11:136. doi: 10.4103/ijpvm.IJPVM_193_20. eCollection 2020

14. Zhixiang Y, Yongxing X, Juan L et al. The effects of soy protein and soy isoflavones intake on chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 2025; 57(5): 1533–1553. doi: 10.1007/s11255-024-04301-4

15. Parastaeva MM, Beresneva ON, Kucher AG, and others. Protein content in the diet, myocardial remodeling, and calcium-phosphorus homeostasis in rats with nephrectomy. Bulletin of St. Petersburg University. Medicine 2014; 14: 196–204 (In Russ.)

16. Kulikov AN, Beresneva ON, Ivanova GT et al. Cardioprotective effect of soy protein on a high-salt diet in cynomolgus macaques. Rus Physiol J named after. I.M. Sechenov 2023; 109(6): 771–787. (In Russ.) doi: 10.31857/S0869813923060055

17. Kayukov IG, Beresneva ON, Parastaeva MM et al. Soybean proteins counteract heart remodeling in wistar rats fed a high sodium chloride diet. Nephrology 2019; 23(6):92–99. (In Russ.) doi:10.36485/1561-6274-2019-236-92-99

18. Moriconi D, Nannipieri M, Jadoon M et al. Albumin-tocreatinine ratio underestimates true 24-hour albuminuria in obesity: clinical relevance for vascular risk stratification. Diabetes Metab Res Rev 2025; 41(5):e70064. doi: 10.1002/dmrr.70064

19. Kawabeta K, Yuasa M, Sugano M, Koba K. Antihypertensive effect of dietary conglycinin in the spontaneously hypertensive rat (SHR). Metabolites 2022;12:422. https://doi.org/10.3390/metabo12050422

20. Palanisamy N, Viswanathan P, Ravichandran MK, Anuradha CV. Renoprotective and blood pressure-lowering effect of dietary soy protein via protein kinase C beta II inhibition in a rat model of metabolic syndrome. Can J Physiol Pharmacol 2010; 88(1): 28–37. doi: 10.1139/Y09-110

21. Tachibana N, Iwaoka Y, Hirotsuka M, Horio F, Kohno M. Beta-conglycinin lowers very-low-density lipoprotein-triglyceride levels by increasing adiponectin and insulin sensitivity in rats. Biosci Biotechnol Biochem 2010; 74(6):1250–1255. doi: 10.1271/bbb.100088

22. Engin A. Endotheliald dysfunction in obesity and therapeutic targets. Adv Exp Med Biol 2024:1460:489–538. doi: 10.1007/978-3-031-63657-8_17

23. Kawabeta K, Hase-Tamaru S, Yuasa M et al. Dietary β-Conglycinin modulates insulin sensitivity, body fat mass, and lipid metabolism in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. J Oleo Sci 2019; 68(4):339–350. doi: 10.5650/jos.ess18232

24. Martinez-Villaluenga C, Rupasinghe SG, Schuler MA, de Mejia EG. Peptides from purified soybean β-conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. FEBS J 2010;277(6):1481–1493. doi: 10.1111/j.1742-4658.2010.07577.x

25. Kim IS. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants (Basel) 2021;10(7):1064. doi: 10.3390/antiox10071064. PMID: 34209224

26. Naaz A, Yellayi S, Zakroczymski MA et al. The soy isofl avone genistein decreases adipose deposition in mice. Endocrinology 2003; 144(8): 3315–2220. doi: 10.1210/en.2003-0076

27. Kusumah J, Gonzalez de Mejia E. Impact of soybean bioactive compounds as response to diet-induced chronic infl ammation: a systematic review. Food Res Int 2022; 162(pt A): 111928. doi:10.1016/j.foodres.2022.111928

28. Smirnov AV, Kucher AG, Dobronravov VA et al. Dietary soy protein slows the development of interstitial renal fibrosis in rats with unilateral ureteral obstruction: an introduction to nutritional epigenomics. Nephrology 2012;16(4):75–83 (In Russ.)


Review

For citations:


Beresneva O.N., Ivanova G.T., Bogdanova E.O., Kucher A.G. The role of soy proteins in cardioprotection in Wistar rats feeded on a high fat diet. Nephrology (Saint-Petersburg). 2025;29(3):87-95. (In Russ.) https://doi.org/10.36485/1561-6274-2025-29-3-87-95. EDN: MLBTUZ

Views: 30


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)