Preview

Нефрология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

СНИЖЕНИЕ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ У БОЛЬНЫХ, ПОЛУЧАЮЩИХ ЗАМЕСТИТЕЛЬНУЮ ПОЧЕЧНУЮ ТЕРАПИЮ: ФОКУС НА САРКОПЕНИЮ

https://doi.org/10.24884/1561-6274-2017-21-4-9-29

Полный текст:

Аннотация

Саркопения является важной причиной снижения физической работоспособности у больных, получающих заместительную почечную терапию. Обсуждаются критерии диагностики, механизмы ее развития и методы коррекции.

Об авторах

А. В. Смирнов
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова; Научно-исследовательский институт нефрологии
Россия

д-р мед. наук

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Научно-исследовательский институт нефрологии, директор.

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54. Тел.: (812) 338-69-01



Р. В. Голубев
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Россия

канд. мед. наук

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Научно-исследовательский институт нефрологии, лаборатория почечной недостаточности, зав. лабораторией.

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54. Тел.: (812) 338-69-14;



Н. Ю. Коростелева
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Россия

канд. мед. наук

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, Научно-исследовательский институт нефрологии, лаборатория почечной недостаточности.

197022, Россия, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54. Тел.: (812) 338-69-14 



А. Ш. Румянцев
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова; Санкт-Петербургский государственный университет
Россия

Проф.

Санкт-Петербургский государственный университет, кафедра факультетской терапии.

Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, кафедра пропедевтики внутренних болезней.

Россия, 199106, Санкт-Петербург, 21-я линия В.О., д. 8а., Тел.: +7 (812) 326-03-26



Список литературы

1. Rosenberg IH. Epidemiologic and methodologic problems in determining nutritional status of older persons. Am J Clin Nutr 1989; 50(5Suppl):1231–1235

2. Marcus RL, LaStayo PC, Ikizler TA et al. Low physical function in maintenance hemodialysis patients is independent of muscle mass and comorbidity. J Ren Nutr 2015; 25(4): 371-375. doi: 10.1053/j.jrn.2015.01.020

3. Correa-de-Araujo R, Hadley E. Skeletal muscle function deficite: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J Gerontol A Biol Sci Med Sci 2014; 69(5): 591-594. doi: 10.1093/gerona/glt208

4. Cruz-Jentoft AJ, Baeyenns JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39(4): 412-423. doi: 10.1093/ageing/afq034

5. Evans WJ, Morley JE, Argiles J et al. Cachexia: a new definition. Clin Nutr 2008; 27(6): 793–799. doi: 10.1016/j.clnu.2008.06.013

6. Argiles JM, Campos N, Lopez-Pedrosa JM et al. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. JAMDA 2016; 17(9): 789-796. doi: 10.1016/j.jamda.2016.04.019

7. Fried LP, Tangen CM, Walston J et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56(3): M146–M156

8. Jeejeebhou KN. Malnutrition, fatigue, frailty, vulnerability, sarcopenia ahn cachexia: overlap of clinical features. Curr Opin Clin Nutr Metab Care 2012, 15(3):213–219. doi:10.1097/MCO.0b013e328352694f

9. Obi Y, Qader H, Kovesdy CP, Kalantar-Zadeh K. Latest consensus and update on protein energy-wasting in chronic kidney disease. Curr Opin Clin Nutr Metab Care 2015; 18(3): 254–262. doi:10.1097/MCO.0000000000000171

10. Serratrice G, Toga M, Roux H et al. Neuropathies, myopathies and neuromyopathies in chronic uremic patients. Presse Med 1967; 75(37): 1835-1838

11. Fahal IH. Uraemic sarcopenia: aetiology and implications. Nephrol Dial Transplant 2014; 29(9): 1655–1665 doi: 10.1093/ndt/gft070

12. Carrero JJ, Johansen KL, Lindholm B et al. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int 2016; 90(1): 53-66. doi: 10.1016/j.kint.2016.02.025

13. Beaudart C, McCloskey E, Bruyere O et al. Sarcopenia in daily practice: assessment and management. BMC Geriatrics 2016; 16(1):170. doi:10.1186/s12877-016-0349-4

14. Dawson-Hughes B, Bishoff-Ferrari H. Considerations concerning the definition of sarcopenia. Osteoporos Int 2016; 27(11): 3139-3144. doi: 10.1007/s00198-016-3674-8

15. Correa-de-Araujo R, Harris-Love MO, Milikovic I et al. The need for standardized assessment of muscle quality in Skeletal Muscle Function Deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol 2017; 8: 87. doi: 10.3389/fphys.2017.00087

16. Stenvinkel P, Carrero JJ, von Walden F et al. Muscle wastingin end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrol Dial Transplant 2016; 31(7): 1070–1077. doi: 10.1093/ndt/gfv122

17. Ren H, Gong D, Jia F et al. Sarcopenia in patients undergoing maintenance hemodialysis: incidence rate, risk factors and its effect on survival risk. Renal Failure 2016; 38(3) : 364-371. doi: 10.3109/0886022X.2015.1132173

18. Guralnik JM, Simonsick EM, Ferrucci L et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994; 49(2): M85-M94

19. Peterson MJ, Thompson DK, Pieper CF et al. A novel analytic technique to measure associations berween circulating biomarkers and physical performance across the adult life span. J Gerontol A Biol Sci Med Sci 2016; 71(2): 196-202. doi: 10.1093/gerona/glv007

20. Curcio F, Ferro G, Basile C et al. Biomarkers in sarcopenia: a multifactorial approach. Exp Gerontol 2016; 85: 1-8. doi: 10.1016/j.exger.2016.09.007

21. Kittiskulnam P, Chertow GM, Carrero JJ et al. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int 2017; [Epub ahead of print]. doi: 10.1016/j.kint.2017.01.024

22. Oksa H, Pasternack A, Pasanen M. Serum urea-creatinine ratio as a prognostic index in hemodialysis patients. Clin Nephrol 1987; 27(3):125-130

23. Tufan F, Yildiz A, Dogan I et al. Urea to creatinin ratio: a forgotten marker of poor nutritional state in patients undergoing hemodialysis treatment. Aging Male 2015; 18(1): 49-53. doi: 10.3109/13685538.2014.908281

24. Greenhall GHB, Davenport A. Screening for muscle loss in patients established on peritoneal dialysis using bioimpedance. Eur J Clin Nutr 2017; 71(1): 70-75. doi: 10.1038/ejcn.2016.202

25. Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle 2015; 6(4): 197-207. doi: 10.1002/jcsm.12034

26. Kooman JP, Broers NJ, Usvyat L et al. Out of control: accelerated aging in uremia. Nephrol Dial Transplant 2013; 28(1): 48-54. doi: 10.1093/ndt/gfs451

27. Hirai K, Ookawara S, Morishita Y. Sarcopenia and physical inactivity in patients with chronic kidney disease. Nephrourol Mon 2016; 8(3):e37443. doi: 10.5812/numonthly.37443

28. Kim JK, Choi SR, Choi MJ et al. Prevalence of and factors associated with sarcopenia in eldery patients with end-stage renal disease. Clin Nutr 2014; 33(1): 64-68. doi: 10.1016/j.clnu.2013.04.002

29. Fitschen PJ, Biruete A, Jeong J, Wilund KR. Efficacy of beta-hydroxy-betamethylbutyrate supplementation in maintenance hemodialysis patients. Hemodial Int 2016; doi: 10.1111/hdi.12440

30. Isoyama N, Qureshi AR, Avesani CM et al. Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin J Am Soc Nephrol 2014; 9(10): 1720-1728. doi: 10.2215/CJN.10261013

31. Yamada S, Tsuruya K, Yoshida H et al. Factors associated with the serum myostatin level in patients undergoing peritoneal dialysis: potential effects of skeletal muscle mass and vitamin D receptor activator use. Calcif Tissue Int 2016; 99(1): 13-22. doi: 10.1007/s00223-016-0118-6

32. Jamal SA, Leiter RE, Jassal V et al. Impaired muscle strength is associated with fractures in hemodialysis patients. Osteoporos Int 2006; 17(9): 1390–1397. doi:10.1007/s00198-006-0133-y

33. Rhee CM, Kalantar-Zadeh K. Resistance exercise: an effective strategy to reverse muscle wasting in hemodialysis patients? J Cachexia Sarcopenia Muscle 2014; 5(3): 177-180. doi: 10.1007/s13539-014-0160-z

34. Avin KG, Moorthi RN. Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr Osteoporos Rep 2015; 13(3): 173-179. doi: 10.1007/s11914-015-0261-4

35. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 2006; 294(1): 50–66. doi:10.1016/j.ydbio.2006.02.022

36. Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2014; 2:1. doi: 10.3389/fcell.2014.00001

37. Wang XH, Du J, Klein JD et al. Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int 2009; 76(7): 751-759. doi: 10.1038/ki.2009.260

38. Rubattu S, Mennuni S, Testa M et al. Pathogenesis of chronic cardiorenal syndrome: is there a role for oxidative stress? Int J Mol Sci 2013; 14(11): 23011-23032. doi: 10.3390/ijms141123011

39. Burks TN, Andres-Mateos E, Marx R et al. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med 2011; 3(82): 82ra37. doi: 10.1126/scitranslmed.3002227

40. Reginster JY, Beaudart C, Buckinx F, Bruyere O. Osteoporosis and sarcopenia: two diseases or one? Curr Opin Clin Nutr Metab Care 2016; 19(1): 31-36. doi: 10.1097/MCO.0000000000000230

41. Girgis CM. Therapies for musculoskeletal disease: can we treat two birds with one stone? Curr Osteoporos Rep 2014; 12(2): 142-153. doi: 10.1007/s11914-014-0204-5

42. Pedersen BK, Steenberg A, Fisher C et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 2003; 24(2-3): 113-119

43. Tagliaferri C, Wittrant Y, Davicco M-J et al. Muscle and bone, two interconnected tissues. Ageing Res Rev 2015; 21: 55-70. doi: 10.1016/j.arr.2015.03.002

44. Sjöblom S, Suuronen J, Rikkonen T et al. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 2013; 75(2): 175-180. doi: 10.1016/j.maturitas.2013.03.016

45. Vogt BP, Borges MC, Goes CR, Caramori JC. Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clin Nutr 2016; 35(6): 1429-1433. doi: 10.1016/j.clnu.2016.03.020

46. Bischoff HA, Borchers M, Gudat F. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 2001; 33(1):19-24

47. Girgis CM, Baldock PA, Downes M. Vitamin D, muscle and bone: integrating effects in development, aging and injury. Mol Cell Endocrinol 2015; 410: 3-10. doi: 10.1016/j.mce.2015.03.020

48. Kim J, Lee Y, Kye S et al. Association of serum vitamin D with osteosarcopenic obesity: Korea National Health and Nutrition Survey 2008-2010. J Cachexia Sarcopenia Muscle 2016; [Epub ahead of print]. doi: 10.1002/jcsm.12154

49. Garcia LA, King KK, Ferrini MG et al. 1,25(OH)2 vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 2011; 152(8): 2976-2986. doi: 10.1210/en.2011-0159

50. Buehring B, Binkley N. Myostatin – the holy grail for muscle, bone and fat? Curr Osteoporos Res 2013; 11(4): 407-414. doi: 10.1007/s11914-013-0160-5

51. Briffa JF, McAinch AJ, Poronnik P, Hrychiw H. Adipokines is a link between obesity and chronic kidney disease. Am J Physiol Renal Physiol 2013; 305(12): F1629-F1636. doi: 10/1152/ajprenal.00263.2013

52. Nashar K, Egan BM. Relationship between chronic kidney disease and metabolic syndrome: current perspectives. Diabetes Metab Syndr Obes 2014; 7:421-435. doi: 10.2147/DMSO.S45183

53. Lee D, Shook RP, Drenowatz C, Blair SN. Physical activity and sarcopenic obesity: definition, assessment, prevalence and mechanism. Future Sci OA 2016; 2(3): FSO127. doi: 10.4155/fsoa-2016-0028

54. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 2004; 287(4): C834-C843. doi: 10.1152/ajpcell.00579.2003

55. Enoki Y, Watanabe H, Arake R et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stressmediated expression of myostatin and atrogin-1. Sci Rep 2016; 6:32084. doi: 10.1038/srep32084

56. Kaizu Y, Ohkawa S, Odamaki M et al. Association between inflammatory mediators and muscle mass in long-term hemodialysis patients. Am J Kidney Dis 2003; 42(2): 295-302

57. Mitch WE, Price SR. Mechanisms activated by kidney disease and the loss of muscle mass. Am J Kidney Dis 2001; 38(6): 1337-1342. doi: 10.1053/ajkd.2001.29249

58. Du J, Wang H, Miereles C et al. Activation of caspase-3 is an initial step triggered accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004; 113(1):115-123. doi: 10.1172/JCI200418330

59. Boivin MA, Battah SI, Dominic EA et al. Activation of caspase-3 in the skeletal muscle during hemodialysis. Eur J Clin Invest 2010; 40(10): 903-910. doi: 10.1111/j.1365-2362.2010.02347.x

60. Sallée M, Dou L, Cerini C et al. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins 2014; 6(3): 934-949. doi:10.3390/toxins6030934

61. Ikizler TA, Pupim LB, Brouillette JR et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am J Physiol Endocrinol Metab 2002; 282(1): E107–E116

62. Nitta K, Tsuchiya K. Recent advances in the pathophysiology and management of protein-energy wasting in chronic kidney disease. Ren Replacement Ther 2016; 2:4. doi: 10.1186/s41100-016-0015-5

63. Mak RH, DeFronzo RA. Glucose and insulin metabolism in uremia. Nephron 1992; 61(4): 377-382

64. Spoto B, Pisano A, Zoccalli C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol 2016; 311(6): F1087-F1108. doi: 10.1152/ajprenal.00340.2016

65. Siew ED, Pupim LB, Majchrzak KM et al. Insulin resistance is associated with skeletal muscle protein breakdown in nondiabetic chronic hemodialysis patients. Kidney Int 2007; 71(2): 146-52. doi: 10.1038/sj.ki.5001984

66. Rabkin R, Sun DF, Chen Y et al. Growth hormone resistance in uremia, a role for impaired JAK/STAT signaling. Pediatr Nephrol 2005; 20(3): 313-318. doi: 10.1007/s00467-004-1713-8

67. Pupim LB, Flakoll PJ, Majchrzak KM et al. Increased muscle protein breakdown in chronic hemodialysis patients with type 2 diabetes mellitus. Kidney Int 2005; 68(4): 1857-65. doi: 10.1111/j.1523-1755.2005.00605.x

68. Wang XH, Hu J, Du J, Mitch WE. Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006; 147(9): 4160-4168. doi: 10.1210/en.2006-0251

69. Chien YH, Han DS, Hwu WL et al. Myostatin and insulinlike growth factor 1: potential therapeutic biomarkers for pompe disease. PloS One 2013; 8(8): e71900. doi: 10.1371/journal. pone.0071900

70. Amthor H, Macharia R, Navarrete R et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci USA 2007; 104(6): 1835-1840. doi: 10.1073/pnas.0604893104

71. Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol 2011; 300(6): H1973-H1982. doi: 10.1152/ajpheart.00200.2011

72. Zhang L, Rajan V, Lin E et al. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J 2011; 25(5): 1653-1663. doi: 10.1096/fj.10-176917

73. Yano S, Nagai A, Isomura M et al. Relationship between blood myostatin levels and kidney function: Shimane CoHRE study. PloS One 2015; 10(10): e0141035. doi: 10/1371/journal. pone.0141035

74. Han DS, Chen YM, Lin SY et al. Serum miostatin levels and grip strength in normal subjects and patients on maintenance hemodialysis. Clin Endocrin 2011; 75(6): 857-863. doi: 10.1111/1365-2265.2011.04120.x

75. Lee SJ. Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS One 2007; 2(8): e789. doi: 10.1371/journal.pone.0000789

76. Wen MS, Wang CY, Lin SL et al. Decrease in irisin in patients with chronic kidney disease. PLoS One 2013; 8(5): e64025. doi: 10.1371/journal.pone.0064025

77. Chang JS, Kim TH, Nguyen TT et al. Circulating irisin levels as a predictive biomarker for sarcopenia: a cross-sectional community-based study. Geriatr Gerontol Int 2017; [Epub ahead of print]. doi: 10.1111/ggi.13030.

78. Ebert T, Focke D, Petroff D et al. Serum levels of the myokine irisin in relation to metabolic and renal function. Eur J Endocrinol 2014; 170(4): 501-506. doi: 10.1530/EJE-13-1053

79. Lee MJ, Lee SA, Nam BY et al. Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis 2015; 242(2): 476-482. doi: 10.1016/j.atherosclerosis.2015.08.002

80. Carrero JJ, Qureshi AR, Nakashima A et al. Prevalence and clinical implications of testosterone deficiency in men with endstage renal disease. Nephrol Dial Transplant 2011; 26(1):184-190. doi: 10.1093/ndt/gfq397

81. Granata S, Zaza G, Simone S et al. Mytochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 2009; 10: 388. doi: 10.1186/1471-2164-10-388

82. Rai DS, Boivin MA, Dominic EA et al. Haemodialysis induces mitochondrial dysfunction and apoptosis. Eur J Clin Invest 2007; 37(12): 971-977. doi: 10.1111/j.1365-2362.2007.01886.x

83. Adey D, Kumar R, McCarthy JT et al. Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab 2000; 278(2): E219-E225

84. Gamboa JL, Billings FT, Bojanowski MT et al. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep 2016; 4(9): e12780. doi: 10.14814/phy2.12780

85. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci 2014; 6: 208. doi: 10.3389/fnagi.2014.00208

86. Stout JR, Fragala MS, Hoffman JR et al. C-terminal agrin fragment is inversely related to neuromuscular fatigue in older man. Muscle Nerve 2015; 51(1): 132-133. doi: 10.1002/mus.24443

87. Sanguinetti R, Puddu A, Mach F et al. Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm 2014: 975872. doi: 10.1155/2014/975872.

88. Tanaka K, Kanazawa I, Yamaguchi T et al. Active vitamin D possesses beneficial effect on the interaction between muscle and bone. Biochem Biophys Res Commun 2014; 450(1): 482-487. doi: 10.1016/j.bbrc.2014.05.145

89. Brunjes DL, Kennel PJ, Christian Schulze P. Exercise capacity, physical activity, and morbidity. Heart Fail Rev 2017; [Epub ahead of print]. doi: 10.1007/s10741-016-9592-1

90. Begini P, Gigante E, Antonelli G et al. Sarcopenia predicts reduced survival in patients with hepatocellular carcinoma at first diagnosis. Ann Hepatol 2017; 16(1): 107-114. doi: 10.5604/16652681.1226821

91. Harada K, Suzuki S, Ishii H et al. Impact of skeletal muscle mass on long-term adverse cardiovascular outcomes in patients with chronic kidney disease. Am J Cardiol 2017; [Epub ahead of print]. doi: 10.1016/j.amjcard.2017.01.003

92. Crawford J. Clinical results in cachexia therapeutics. Curr Opin Clin Nutr Metab Care 2016; 19(3): 199-204. doi: 10.1097/MCO.0000000000000274

93. O’Brien FJ, Fong KD, Sirich TL, Meyer TW. More dialysis has not proven much better. Semin Dial 2016; 29(6): 481-490. doi: 10.1111/sdi.12533

94. Chertow GM, Levin NW, Beck GJ et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med 2010; 363(24): 2287-300. doi: 10.1056/NEJMoa1001593 96. Смирнов АВ, Нестерова ОБ, Голубев РВ и др. Кардиопротективные эффекты сукцинатсодержащего диализирующего раствора. Нефрология 2012; 16(2): 69-78 [Smirnov AV, Nesterova OB, Golubev RV i dr. Kardioprotektivnye effekty suktcinatsoderzhashchego dializiruiushchego rastvora. Nephrology 2012; 16(2): 69-78]

95. Смирнов АВ, Нестерова ОБ, Суглобова ЕД и др. Клинико-лабораторная оценка эффективности лечения больных с терминальной стадией почечной недостаточности с использованием хронического гемодиализа и ацидосукцината. Тер Арх 2013; 85(1): 69-75 [Smirnov AV, Nesterova OB, Suglobova ED i dr. Cliniko-laboratornaia ocenka effektivnosti lecheniia bolnyh s terminalnoi stadiei pochechnoi nedostatochnosti s ispolzovaniem khronicheskogo gemodializa i atcidosuktcinata. Ter Arkh 2013; 85(1): 69-75]

96. Смирнов АВ, Васильева ИА, Нестерова ОБ и др. Качество жизни и когнитивные функции у пациентов с терминальной стадией почечной недостаточности, получающих гемодиализ с использованием сукцинатсодержащего диализирующего раствора. Тер Арх 2014; 86(6): 11-17 [Smirnov AV, Vasilyeva IA, Nesterova OB i dr. Kachestvo zhizni i kognitivnye funktcii u patcientov s terminalnoi stadiei pochechnoi nedostatochnosti, poluchaiushchikh gemodializ s ispol`zovaniem suktcinatsoderzhashchego dializiruiushchego rastvora. Ter Arkh 2014; 86(6): 11-17]

97. Смирнов АВ, Голубев РВ, Васильев АН и др. Гемодинамические эффекты содержащего сукцинат диализирующего раствора. Тер Арх 2015; 87(6): 56-61. doi: 10.17116/ terarkh201587656-61 [Smirnov AV, Golubev RV, Vasilev AN i dr. Gemodinamicheskie e`ffekty soderzhashchego suktcinat dializiruiushchego rastvora. Ter Arkh 2015; 87(6): 56-61. doi: 10.17116/terarkh201587656-61]

98. Wallimann T, Riek U, Möddel M. Intradialytic creatin supplementation: a scientific rationale for improving the health and quality of life of dialysis patients. Med Hypotheses 2017; 99: 1-14. doi: 10.1016/j.mehy.2016.12.002

99. Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40(5): 1271-1296. doi: 10.1007/s00726-011-0877-3

100. Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine

101. supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 2012; 9(1): 33. doi: 10.1186/1550-2783-9-33

102. Taes YE, Delanghe JR, De Bacquer D et al. Creatine supplementation does not decrease total plasma homocysteine in chronic hemodialysis patients. Kidney Int 2004; 66(6): 2422-2428. doi: 10.1111/j.1523-1755.2004.66019.x

103. Lamon S, Zacharewicz E, Arentson-Lantz E et al. Erythropoietin does not enhance skeletal muscle protein synthesis following exercise in young and older adults. Front Physiol 2016; 7: 292. doi: 10.3389/fphys.2016.00292

104. de Cavanagh EM, Piotrkowski B, Basso N et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 2003; 17(9): 1096-1098. doi: 10.1096/fj.02-0063fje

105. Maggio M, Ceda GP, Lauretani F et al. Relation of angiotensin converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects. Am J Cardiol 2006; 97(10): 1525-1529. doi: 10.1016/j.amjcard.2005.11.089

106. Onder G, Penninx BWJH, Balkrishnan et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 2002; 359(9310): 926-930

107. KDIGO CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKDMBD). Kidney Int Suppl 2009; 113: S1-S130. doi: 10.1038/ki.2009.188

108. Collamati A, Marzetti E, Calvani R et al. Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol 2016; 13(7): 615-624. doi: 10.11909/j.issn.1671-5411.2016.07.004

109. Taskapan H, Baysal O, Karahan D et al. Vitamin D and muscle strength, functional ability and balance in peritoneal dialysis patients with vitamin D deficiency. Clin Nephrol 2011; 76(2): 110-116

110. Johansen KL, Painter PL, Sakkas GK et al. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: a randomized, controlled trial. J Am Soc Nephrol 2006; 17(8): 2307-2314. doi: 10.1681/ASN.2006010034

111. Boccanfuso JA, Hutton M, McAllister B. The effects of megestrol acetate on nutritional parameters in a dialysis population. J Ren Nutr 2000; 10(1): 36-43. doi: 10.1053/JREN01000036

112. Hansen TB, Gram J, Jensen PB et al. Influence of growth hormone on whole body and regional soft tissue composition in adult patients on hemodialysis. A double-blind, randomized, placebo-controlled study. Clin Nephrol 2000; 53(2): 99-107

113. Feldt-Rasmussen B, Lange M, Sulowicz W et al. Growth hormone treatment during hemodialysis in a randomised trial improves nutrition, quality of life, and cardiovascular risk. J Am Soc Nephrol 2007; 18(7): 2161-2171. doi: 10.1681/ASN.2006111207

114. Moledina DG, Wilson FP. Pharmacologic treatment of common symptoms in dialysis patients: a narrative review. Semin Dial 2015; 28(4): 377-383. doi: 10.1111/sdi.12378

115. Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options. Gerontology 2014; 60(4): 294-305. doi: 10.1159/000356760

116. Haruta I, Fuku Y, Kinoshita K et al. One-year intranasal application of growth hormone releasing peptide-2 improves body weight and hypoglycemia in a severely emaciated anorexia nervosa patient. J Cachexia Sarcopenia Muscle 2015; 6(3): 237-241. doi: 10.1002/jcsm.12028

117. Ashby DR, Ford HE, Winne KJ et al. Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int 2009; 76(2): 199-206. doi: 10.1038/ki.2009.114

118. Zhang YM, Zhuo L, Hu J et al. Clinical significance of different carnitine levels for improving the prognosis of patients undergoing hemodialysis. Ren Fail 2016; 38(10): 1654-1658. doi: 10.1080/0886022X.2016.1229967

119. Babcock TA, Helton WS, Espat NJ. Eicosapentaenoic acid (EPA): an anti-inflammatory ω-3 fat with potential clinical application. Nutrition 2000; 16(11-12): 1116-1118

120. Magee P, Pearson S, Allen J. The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumor necrosis factor (TNF)-alfa during murine skeletal muscle cell differentiation. Lipids Health Dis 2008; 7: 24. doi: 10.1186/1476-511X-7-24

121. Smith GI, Atherton P, Reeds DN et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 2011; 93(2): 402-412. doi: 10.3945/ajcn.110.005611

122. Wang ZH, Hsu CC, Huang CN, Yin MC. Antiglycative effects of oleanoic acid and ursolic acid in kidney of diabetic mice. Eur J Pharm 2010; 628(1-3): 255-260. doi: 10.1016/j.ejphar.2009.11.019

123. Kunkel SD, Suneja M, Ebert SM et al. mPNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 2011; 13(6): 627-638. doi: 10.1016/j.cmet.2011.03.020

124. Sakuma K, Yamaguchi A. Novel intriguing strategies attenuating to sarcopenia. J Aging Res 2012; doi: 10.1155/2012/251217

125. Attie KM, Borgstein NG, Yang Y et al. A single ascendingdose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve 2013; 47(3): 416-423. doi: 10.1002/mus.23539

126. Krivickas LS, Walsh R, Amato AA. Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve 2009; 39(1): 3-9. doi: 10.1002/mus.21200

127. Wissing ER, Millay DP, Vuagniaux G, Molkentin JD. Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul Disord 2010; 20(11): 753-760. doi: 10.1016/j.nmd.2010.06.016

128. Tseng YC, Kulp SK, Lai IL et al. Preclinical investigation of the novel histone deacetylase inhibitor AR-42 in the treatment of cancer-induced cachexia. J Natl Cancer Inst 2015; 107(12): djv274. doi: 10.1093/jnci/djv274

129. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease state. J Am Soc Nephrol 2006; 17(7): 1807-1819. doi: 10.1681/ASN.2006010083

130. Yu SCY, Khow KSF, Jadczak AD, Visvanathan R. Clinical screening tools for sarcopenia and its management. Curr Gerontol Geriart Res 2016; doi: 10.1155/2016/5978523

131. Franch HA. Nutrition and muscle catabolism in maintenance hemodialysis: does feeding make muscle cells selective self-eaters? J Ren Nutr 2009; 19(1): 86-90. doi: 10.1053/j.jrn.2008.10.009

132. Beaudart C, Dawson A, Shaw SC et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017; [Epub ahead of print]. doi: 10.1007/s00198-017-3980-9

133. Kouidi E, Albani M, Natsis K et al. The effects of axercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant 1998; 13(3): 685-699

134. Baskin KK, Winders BR, Olson EN. Muscle as a «Mediator» of systemic metabolism. Cell Metab 2015; 21(2): 237-248. doi: 10.1016./j.cmet.2014.12.021

135. Manfredini F, Mallamaci F, D’Arrigo G et al. Exercise in patients on dialysis: a multicenter, randomized clinical trial. J Am Soc Nephrol 2016; [Epub ahead of print]. doi: 10.1681/ASN.2016030378

136. Konstantinidou E, Koukouvou G, Kouidi E et al. Exercise training in patient with end-stage renal disease on hemodialysis: comparison of three rehabilitation programs. J Rehabil Med 2002; 34(1): 40-45

137. Chen C-T, Lin S-H, Chen J-S, Hsu Y-J. Muscle wasting in hemodialysis patients: new therapeutic strategies for resolving an old problem. Sci World J 2013:643954; doi: 10.1155/2013/643954

138. Johansen KL, Painter P. Exercise in individuals with CKD. Am J Kidney Dis 2012; 59(1): 126-134. doi: 10.1053/j.ajkd.2011.10.008

139. Kopple JD, Wang H, Casaburi R et al. Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle. J Am Soc Nephrol 2007; 18(11): 2975-2986. doi: 10.1681/ASN.2006070794

140. Kirkman DL, Mullins P, Junglee NA et al. Anabolic exercise in hemodialysis patients: a randomized controlled pilot study. J Cachexia Sarcopenia Muscle 2014; 5(3): 199-207. doi: 10.1007/s13539-014-0140-3

141. Cheema B, Abas H, Smith B et al. Progressive exercise for anabolism in kidney disease (PEAK): a randomized, controlled trial of resistance training during hemodialysis. J Am Soc Nephrol 2007; 18(5): 1594-1601. doi: 10.1681/ASN.2006121329

142. Dong J, Sundell MB, Pupim LB et al. The effect of resistance exercise to augment long-term benefits of intradialytic oral nutritional supplementation in chronic hemodialysis patients. J Ren Nutr 2011; 21(2): 149-159. doi: 10.1053/j.jrn.2010.03.004


Для цитирования:


Смирнов А.В., Голубев Р.В., Коростелева Н.Ю., Румянцев А.Ш. СНИЖЕНИЕ ФИЗИЧЕСКОЙ РАБОТОСПОСОБНОСТИ У БОЛЬНЫХ, ПОЛУЧАЮЩИХ ЗАМЕСТИТЕЛЬНУЮ ПОЧЕЧНУЮ ТЕРАПИЮ: ФОКУС НА САРКОПЕНИЮ. Нефрология. 2017;21(4):9-29. https://doi.org/10.24884/1561-6274-2017-21-4-9-29

For citation:


Smirnov A.V., Golubev R.V., Korosteleva N.Y., Rumyantsev A.S. DECLINE OF PHYSICAL PERFORMANCE IN PATIENTS RECEIVING RENAL REPLACEMENT THERAPY: FOCUS ON SARCOPENIA. Nephrology (Saint-Petersburg). 2017;21(4):9-29. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-4-9-29

Просмотров: 255


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)