Preview

Nephrology (Saint-Petersburg)

Advanced search

ECTOPIC CALCIFICATION IN CHRONIC KIDNEY DISEASE. PART 1. CLASSIFICATION AND PATHOGENESIS

https://doi.org/10.24884/1561-6274-2017-21-4-30-39

Abstract

Cardio-vascular diseases are the main cause of death in patietns with chronic kidney disease. Prognostic predictor of these complications if ectopic/vascular calcification. Calcification of soft tissues and vessels in uremia is the result of mineral and bone disorders; therapy for its correction; transdifferentiation of vascular smooth muscle cells. This article presents the literature review which summarizes data of mechanisms and pathogenesis of ectopic calcification in chronic kidney disease.

About the Authors

L. V. Egshatyan
Federal State Budgetary Establishment Endocrinology Research Centre, Ministry of Health of Russia, Department «pathology of the parathyroid glands»; Chair of Endocrinology and Diabetology, A.I. Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation
MD, PhD


N. G. Mokrysheva
Federal State Budgetary Establishment Endocrinology Research Centre, Ministry of Health of Russia, Department «pathology of the parathyroid glands»
Russian Federation
MD, PhD


References

1. Hak AE, Pols HA, van Hemert AM et al. Progression of aortic calcification is associated with metacarpal bone loss during menopause:A population-based longitudinal study. Arterioscler Thromb Vasc Biol 2000; 20 (8):1926–1931

2. Braun J, Oldendorf M, Moshage W et al. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis 1996; 27 (3):394–401

3. World Health Organization. The top 10 causes of death. Fact sheet N°310. Updated 2014

4. Murphy WA, Nedden Dz D, Gostner P et al. The iceman: discovery and imaging. Radiology 2003; 226:614–629

5. Buerger L, Oppenheimer A. Bone formation in sclerotic arteries. J Exp Med 1908 May 1; 10(3):354-367

6. Ibels L, Alfrey A, Huffer W et al. 3rd: Arterial calcification and pathology in uremic patients undergoing dialysis. Am J Med 1979. 66:790–796

7. Virchow R. Die Cellularpathologie in ihrer Begru¨ndung auf physiologische und pathologische Gewebslehre. Verlag von August Hirschwald, Berlin: 1858, reprint: Hildesheim: Georg Olms Verlagsbuchhandlung; 1966. p327–329

8. Tanimura A, McGregor DH, Anderson HC. Matrix vesicles in atherosclerotic calcification. Proc Soc Exp Biol Med 1983;172(2):173-177

9. Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 2011; 33(5):409-17. doi: 10.1007/s00281-010-0230-z.

10. Bostrom K, Watson K, Horn S et al. Bone morphogenetic 1993; 91:1800–1809

11. Gоrriz J, Molina P, Cerverоn M et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol 2015;10:654–666

12. Nasrallah MM, El-Shehaby AR, Salem MM et al. Fibroblast growth factor-23 is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant 2010; 25: 2679–2685

13. London GM, Marty C, Marchais SJ et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol 2004; 15 (7): 1943-1951

14. Block GA, Raggi P, Bellasi A et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kid Int 2007; 71 (5): 438–441

15. Lanzer Р, Boehm М, Sorribas V et al. Medial vascular calcification revisited: review and perspectives. European Heart Journal 2014; 35: 1515–1525 doi:10.1093/eurheartj/ehu163

16. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 2008;117:2938–2948

17. Ageev FT, Barinova IV, Seradenina EM et al. Osteoporosis and Arterial Stiffness: Study of 103 Women With Mild to Moderate Risk of Cardiovascular. Disease 2013;53(6):51-58 Russian. [Агеев ФТ, Баринова ИВ, Середенина ЕМ и др. Остеопороз и жесткость артерий: Исследование 103 женщин с умеренным и низким риском развития осложнений сердечнососудистых заболеваний 2013; 53(6):51-58]

18. Johnson R, Leopold J, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 2006; 99(10): 1044-1059. Rev. Erratum in: Circ Res. 2009;105(6):e8

19. Go AS, Chertow GM, Fan D. Chronic kidney disease and the Risks of Death, cardiovascular events and hospitalization. N Engl J Med 2004; 351 (13): 1296–1305

20. Yu Z, Gu L, Pang H et al. Sodium thiosulfate: an emerging treatment for calciphylaxis in dialysis patients. Case Rep Nephrol Dial 2015; 5:77–82. doi: 10.1159/000380945

21. Graciolli FG, Neves KR, dos Reis LM. Phosphorus overload and PTH induce aortic expression of Runx2 in experimental uraemia. Nephrology, Dialysis, Transplantation 2009; 24(5):1416–1421

22. Coates T, Kirkland G, Dymock R et al. Cutaneous necrosis from calcific uremic arteriolopathy. Am J Kidn Dis 1998; 32(3): 384–391

23. Llach F. Calcific uremic arteriolopathy (calciphylaxis): an evolving entity? Am J Kidney Dis 1998; 32 (3): 384–391

24. Egshatyan LV, Rozhinskaya LYa. Calcific uremic arteriolopathy (calciphylaxis): review and clinical represent. Nephrology and Dialysis 2015;17(4): 478-485. Russian. [Егшатян ЛВ, Рожинская ЛЯ. Кальцифицирующая уремическая артериолопатия (кальцифилаксия): обзор литературы и собственное наблюдение. Нефрология и Гемодиализ. 2015.17(4)478-485]

25. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 2006; (174):249-282

26. Moe SM, Chen NX. Pathophysiology of vascular calcification in chronic kidney disease. Circ Res 2004;95:560-567

27. Смирнов АВ, Румянцев АШ. Строение и функции костной ткани в норме и при патологии. Сообщение II. Нефрология 2015;19(1):8-17. DOI:10.24884/1561-6274-2015-1-8-17 [Smirnov AV, Rumyantsev ASh. Bone tissue function and structure under normal and pathological condition. Message «. Nephrology (Saint-Petersburg). 2015;19(1):8-17. (In Russ.) DOI:10.24884/1561-6274-2015-1-8-17]

28. Bucay N, Sarosi I, Dunstan CR et al. osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12(9):1260-1268

29. Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 6; 390(6655):45-51

30. Luo G, Ducy P, McKee M et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nat 1997;386:78-81

31. Yamauchi M, Yamaguchi T, Nawata K et al. Increased low-density lipoprotein cholesterol level is associated with nonvertebral fractures in postmenopausal women. Endocrine 2015; (1):279-286. doi: 10.1007/s12020-014-0292-0

32. Iseki К, Fukiyama К. Long-term prognosis and incidence of acute myocardial infarction in patients on chronic hemodialysis. The Okinawa Dialysis Study Group. Am J Kidney Dis 2000; 36: 820-825

33. Cheung A, Sarnak M, Yan G et al. Atherosclerotic cardiovascular disease risk in chronic hemodialysis patients. Kid Int 2000; 58 (1) 353-362

34. Vanholder R, Glorieux G, De Smet R, Lameire N. New insights in uremic toxins. Kidney Int 2003; 63 (84): S6-S10

35. Рафрафи Х, Румянцев АШ. Статус витамина D и состояние сердечно-сосудистой системы у пациентов с хронической болезнью почек С5д стадии. Нефрология 2015; 19(4):51-54. DOI:10.24884/1561-6274-2015-4-51-54 [Rafrafi H., Rumyantsev A.Sh. Vitamin D state and cardiovascular system in patients with chronic kidney disease S5d stade. Nephrology (SaintPetersburg). 2015;19(4):51-54. (In Russ.) DOI:10.24884/1561-6274-2015-4-51-54]

36. London GМ, Drueke ТВ. Atherosclerosis and arteriosclerosis in chronic renal failure. Kidney Int 1997; 51 (6) 1678-1695

37. Schwarz U, Buzello M, Ritz E et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol Dial Transplant 2000;15 (2) 218–223

38. Villa-Bellosta R, Rivera-Torres J, Osorio F et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford Progeria Syndrome that is ameliorated on pyrophosphate treatment. Circulation 2013; 127(24). DOI: 10.1161/Circulation.112.000571

39. Georgios Efstratiadis, Konstantinos Koskinas, Efstathios Pagourelias. Coronary calcification in patients with end-stage renal disease: a novel endocrine disorder? Hormones 2007; 6(2):120-131

40. Patidar A, Singh DK, Winocour P et al. Human uraemic serum displays calcific potential in vitro that increases with advancing chronic kidney disease. Clin Sci (Lond) 2013;125:237–245

41. Chen NX, Duan D, O’Neill KD et al. The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kid Int 2006; 70 (6): 1046–1053

42. Itoh K, Udagawa N, Katagiri T. Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappa B ligand. Endocr 2001; 142(8): 3656–3662

43. Wang S, Hirschberg R. Loss of renal tubular BMP7 during the evolution of experimental diabetic nephropathy. J Am Soc Nephrol 2000; 11(2): 655A

44. Davies MR, Lund RJ, Mathew S, Hruska KA. Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. J Am Soc Nephrol 2005;16 (4) 917-928

45. Kohn AD, Moon RT. Wnt and calcium signaling: β-cateninindependent pathways. Cell Calcium 2005; 38: 439–446

46. Glass DA, Karsenty G. 2nd In vivo analysis of Wnt signaling in bone. Endocrinology 2007; 148: 2630–2634

47. Kuhl M, Sheldahl LC, Park M et al. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16(7): 279–283

48. Cheng SL, Shao JS, Cai J et al. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem 2008; 283 (29): 20505–20522. doi: 10.1074/jbc.M800851200.

49. Jono S, McKee M, Murry C et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 2000; 87(7):10–17

50. Suske G. The Sp-family of transcription factors. Gene 1999; 238 (2): 291–300

51. Silva I, Branco J. Rank/Rankl/opg: literature review. Acta Reumatol Port 2011; 36(3): 209-218

52. Bucay N, Sarosi I, Dunstan C et al. Osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification. Genes Develop 1998; 12 (9): 1260–1268

53. Simonet W, Lacey D, Dunstan C et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89 (2): 309–319

54. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin. Paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol 2002;22 (4) 549–553

55. Min H, Morony S, Sarosi I et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 2000; 192: 463-474

56. Bekker P, Holloway D, Nakanishi A et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 2001; 16 (2): 348–360

57. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol 2002; 22(4):549-553

58. Cozzolino M, Dusso AS, Slatopolsky E. Role of calciumphosphate product and bone-associated proteins on vascular calcification in renal failure. J AmSoc Nephrol 2001; 12 (11): 2511–2516

59. Seibel MJ, Robins SP, Bilezikian JP. Editorial: Serum undercarboxylated osteocalcin and the risk of hip fracture. J Clin Endocrinol Metab 1997; 82 (3):717–718

60. Noonan W, Koch K, Nakane M. Differential effects of vitamin D receptor activators on aortic calcification and pulse wave velocity in uraemic rats. Nephrol Dial Transplant 2008; 23 (12): 3824-3830

61. Luo G, Ducy P, McKee MD et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386 (6620): 78–80

62. Wallin R, Wajih N, Greenwood G, Sane D. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev 2001; 21 (4):274–301

63. Speer MY, McKee MD, Guldberg RE et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein–deficient mice. J Exp Med 2002; 196 (8):1047–1055

64. Scatena M, Liaw L, Giachelli CM. Osteopontin: A multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 2007; 27 (11): 2302–2309

65. Mazzali M, Kipari T, Ophascharoensuk V et al. Osteopontin – a molecule for all seasons. Q J Med 2002; 95 (1): 3–13

66. Steitz SA, Speer MY, McKee MD et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 2002; 161 (6): 2035–2046

67. Steitz SA, Speer MY, Curinga G et al. Smooth muscle cell phenotypic transition associated with calcification. Circ Res 2001;89:1147-1154

68. Giachelli CM, Speer MY, Li X et al. Regulation of vascular calcification: Roles of phosphate and osteopontin. Circ Res 2005; 96: 717–722

69. Chen NX, O’Neill KD, Chen X et al. Fetuin-A uptake in bovine vascular smooth muscle cells is calcium dependent and mediated by annexins. Am J Physiol Renal Physiol 2007; 292: F599–F606

70. Ketteler M, Bongartz P, Westenfeld R et al. Association of low fetuin- A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a crosssectional study. Lancet 2003; 361 (9360): 827-833

71. Lebreton JP, Joisel F, Raoult JP et al. Serum concentration of human alpha 2-HS glycoprotein during the inflammatory process: evidence that alpha 2-HS glycoprotein is a negative acute-phase reactant. J Clin Invest 1979; 64(4): 1118-1129

72. Schafer C, Heiss A, Schwarz A et al. The serum protein {alpha}2-Heremans- Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 2003;112 (3): 357-366

73. Gowdak LHW, Arantes RL, de Paula FJ et al. Underuse of American College of Cardiology/American Heart Association Guidelines in hemodialysis patients. Ren Fail 2007: 29: 559-565.10.1080/08860220701395002

74. M Goicoechea, SG de Vinnesa, F Gomes-Camdera. Predictive cardiovascular risk factors in patients with chronic kidney disease (CKD). Kidney Int 2005; 67 (93): 35-38

75. Razzaque MS, Sitara D, Taguchi T et al. Premature aginglike phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006; 20 (6): 720-722

76. Добронравов ВА. Фосфат, почки, кости и сердечно-сосудистая система. Нефрология 2016; 20(4):10-24. DOI:10.24884/1561-6274-2016-4-10-24 [Dobronravov VA. Phosphate, kidneys, bones and cardiovascular system. Nephrology (Saint-Petersburg). 2016;20(4):10-24. (In Russ.) DOI:10.24884/1561-6274-2016-4-10-24]

77. Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of FGF23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113 (4): 561-568

78. Kuro-o M. Klotho in chronic kidney disease – what’s new? Nephrol Dial Transplant 2009; 24 (6): 1705–1708. doi: 10.1093/ndt/gfp069


Review

For citations:


Egshatyan L.V., Mokrysheva N.G. ECTOPIC CALCIFICATION IN CHRONIC KIDNEY DISEASE. PART 1. CLASSIFICATION AND PATHOGENESIS. Nephrology (Saint-Petersburg). 2017;21(4):30-39. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-4-30-39

Views: 6695


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)