Preview

Нефрология

Расширенный поиск

Биомаркеры в диагностике острого повреждения почек. Сообщение I

Полный текст:

Аннотация

В последние несколько лет все большее внимание привлекает возможность использования биомаркеров в диагностике острого повреждения почек. Данный факт обусловлен рядом недостатков таких традиционных параметров, как концентрации креатинина и мочевины сыворотки крови, измерение темпа диуреза, которые, с одной стороны, зависят от ряда экстраренальных факторов, с другой - их изменение происходит на поздних, необратимых этапах повреждения почечной ткани. В данной статье проанализированы возможности использования ряда маркеров в ранней диагностике различных вариантов ОПП. В публикующейся первой части работы рассматривается понятие биомаркера, подходы к их классификации, а также доказанная по данным экспериментальных и клинических исследований роль наиболее изученных биомаркеров, таких как нейтрофильный желатиназо-ассоциированный липокалин (NGAL), молекула почечного повреждения (KIM-1), интерлейкин-18, печеночный протеин, связывающий жирные кислоты (L-FABP), цистатин С и др.

Об авторах

Я. Ю. Пролетов
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


Е. С. Саганова
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


А. В. Смирнов
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


Список литературы

1. Weber JA, van Zanten AP. Interferences in current methods for measurements of creatinine. Clin Chem 1991; 37 (5): 695-700

2. Stevens LA, Levey AS. Measurement of kidney function. Med Clin North Am 2005; 89 (3): 457-473

3. Hewitt SM, Dear J, Star RA. Discovery of protein biomarkers for renal diseases. JAm Soc Nephrol 2004; 15 (7): 1677-1689

4. Herget Rosenthal S, Marggraf G, Husing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int 2004; 66 (3): 1115-1122

5. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006; 17 (6): 1503-1520

6. Coca SG, Yalavarthy R, Concato J et al. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 2008; 73 (9): 1008-1016

7. Waikar SS, Bonventre JV. Can we rely on blood urea nitrogen as a biomarker to determine when to initiate dialysis? Clin J Am Soc Nephrol 2006; 1 (5): 903-904

8. Luke RG. Uremia and the BUN. New Engl J Med 1981; 305 (20): 1213-1215

9. Chertow GM, Burdick E, Honour M et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 2005; 16 (11):3365-3370

10. Вельков В.В. NGAL - “ренальный тропонин”, ранний маркер острого повреждения почек: актуальность для нефрологии и кардиохирургии. Клинико-лабораторный консилиум 2011; 2 (38): 90-100

11. Смирнов А.В. Системный подход к анализу кардиоренальных взаимоотношений как первый шаг на пути к нефрологии формата П4. Нефрология 2011; 12 (2): 11-19

12. Mayer P, Mayer B, Mayer G. Systems biology: building a useful model from multiple markers and profiles. Nephrol Dial Transplant 2012; 27(11): 3995-4002

13. Наточин Ю.В. Нефрология и фундаментальная наука. Нефрология 2012; 16 (1): 9-21

14. Edelstein CL. Biomarkers in Kidney Disease. Elsevier Inc, 2011

15. Martensson J, Martling CR, Bel Ml. Novel biomarkers of acute kidney injury and failure: clinical applicability. British Journal of Anaesthesia 2012; 109 (6): 843-850

16. Awad AS, Rouse M, Huang L, et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury. Kidney Int 2009; 75 (7): 689-698

17. Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediat Inflamm. 2009: 137072

18. Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med 2007; 357 (8): 797-805

19. Geus H, Betjes M, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J 2012; 5 (2): 102-108

20. Kokkoris S., Pipili C, Grapsa E. Novel Biomarkers of Acute Kidney Injury in the General Adult ICU: A Review. Renal Failure 2013; 35(4):579-591

21. Tsigou E, Psallida V, Demponeras C. Role of New Biomarkers: Functional and Structural Damage. Crit Care Res Pract. 2013; 2013:361078

22. Bonventre JV, Vaidya VS, Schmouder R et al. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 2010; 28 (5): 436-440

23. Tesch GH. Review: Serum and urine biomarkers of kidney disease: A pathophysiological perspective. Nephrology (Carlton) 2010; 15 (6): 609-616

24. Noto A, Cibecchini F, Fanos V et al. NGAL and Metabolomics: The Single Biomarker to Reveal the Metabolome Alterations in Kidney Injury. Biomed Res Int. 2013; 612032

25. Kjeldsen L, Cowland JB, Borregaard N. Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta. 2000; 1482 (1-2): 272-283

26. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase gelatinase associated lipocalin from humans. Genomics. 1997; 45 (1): 17-23

27. Schmidt Ott KM, Mori K, Li JY et al. Dual action of neutrophil gelatinase associated lipocalin. J Am Soc Nephrol. 2007; 18 (2): 407-413

28. Goetz DH, Holmes MA, Borregaard N et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002; 10 (5): 1033-1043

29. Yang J, Goetz D, Li JY et al. An iron delivery pathway mediated by a lipocalin. Mol Cell 2002; 10 (5): 1045-1056

30. Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 2005; 115 (3): 610-621

31. Devarajan P. Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle. Cancer Ther 2007; 5 (B): 463-470

32. Devarajan P. The promise of biomarkers for personalized renal cancer care. Kidney Int 2010; 7(9): 755-757

33. Supavekin S, Zhang W, Kucherlapati R et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int 2003; 63 (5): 1714-1724

34. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker. J Am Soc Nephrol 2003; 14 (10): 2534-2543

35. Grigoryev DN,Liu M, Hassoun HT et al. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol 2008; 19 (3): 547-558

36. Schmidt-Ott KM. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury--where do we stand today? Nephrol Dial Transplant 2011; 26 (3): 762-764

37. Пролетов Я.Ю., Саганова Е.С., Галкина О.В. и др. Роль некоторых биомаркеров в оценке характера почечного повреждения у пациентов с хроническими гломерулопатиями. Нефрология 2013; 17 (1): 60-69

38. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365 (9466): 1231-1238

39. Dent C, Dastrala S, Bennet M, et al. Plasma NGAL predicts AKI, morbidity andmortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care 2007; 11 (6): 127-132

40. Bachorzewska Gajewska H, Malyszko J, Sitniewska E, et al. Neutrophil gelatinase associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol 2006; 6 (3): 287-292

41. Wagener G, Jan M, Kim M, et al. Association between increases in urinary neutrophil gelatinase associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology 2006; 105 (3): 485-491

42. Haase Fielitz A, Bellomo R, Devarajan P, et al. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery e a prospective cohort study. Crit Care Med 2009; 37 (2): 553-560

43. Haase-Fielitz A, Bellomo R, Devarajan P. The predictive performance of plasma neutrophil gelatinase associated lipocalin (NGAL) increases with grade of acute kidney injury. Nephrol Dialysis Transplant 2009; 24 (11): 3349-3354

44. Tuladhar SM, Puntmann VO, Soni M, et al. Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase associated lipocalin after cardiopulmonary bypass. J Cardiovasc Pharmacol 2009; 53 (3):261-266

45. McIlroy DR, Wagener G, Lee HT. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin J Am Soc Nephrol 2010; 5 (2): 211-219

46. Nauta FL, Boertien WE, Bakker SJ, et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 2011; 34 (4): 975-981

47. Nickolas TL, O’Rourke MJ, Yang J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 2008; 148 (11): 810-819

48. Trachtman H, Christen E, Cnaan A, et al. Urinary neutrophil gelatinase associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 2006; 21 (7): 989-994

49. Makris K, Markou N, Evodia E, et al. Urinary neutrophil gelatinase associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multipletrauma patients. Clin Chem Lab Med 2009; 47 (1): 79-82

50. Wasilewska A., Zoch-Zwierz W., Taranta-Janusz K. et al. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of cyclosporine nephrotoxicity? Pediatr. Nephrol2010; 25 (5): 889-897

51. Martensson J, Bell M, Oldner A et al. Neutrophil gelatinase -associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med 2010; 36 (8): 1333-1340

52. Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008; 36 (4): 1297-1303

53. Parikh CR, Jani A, Mishra J et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006; 6 (7): 1639-1645

54. Hall IE, Yarlagadda SG, Coca SG et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol 2010; 21 (1): 189-197

55. Haase M, Bellomo R, Devarajan P et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and metaanalysis. Am J Kidney Dis 2009; 54 (6): 1012-1024

56. Bolignano D, Coppolino G, Campo S et. al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is associated with severity of renal disease in proteinuric patients. Nephrol. Dial. Transplant 2008; 23 (1): 414-416

57. Козловская ЛВ, Бобкова ИН, Чеботарева НВ. и др. Нефротический криз неотложное состояние у больных с нефротическим синдромом. Тер арх 2012; 84(6): 68-72

58. Vanmassenhove J, Vanholder R, Nagler E et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 2013; 28(2): 254-273

59. Михайловская М., Шерстобитов М. Толковый словарь англоязычных терминов медико-биологической статистики. 2009. URL: http://www.statsoft.ru/coordination/news/news_detail.php? ELEMENT_ID=590

60. Ichimura T, Asseldonk EJ, Humphreys BD et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 2008; 118 (5): 1657-1668

61. Bailly V, Zhang Z, Meier W et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 2002; 277 (42): 39739-39748

62. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biobiomarker and much more. Nephrol Dial Transplant. 2009; 24 (11): 3265-3268

63. Ichimura T, Bonventre JV, Bailly V et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. Journal of Biological Chemistry 1998; 273 (7): 4135-4142

64. Han WK, Bailly V, Abichandani R et al. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int 2002; 62 (1): 237-244

65. Ichimura T, Hung CC,Yang SA et al. Kidney injury molecule 1:a tissue and urinary biomarker for nephrotoxicant induced renal injury. Am J Physiol 2004; 286 (3): 552-563

66. Koyner JL, Vaidya VS, Bennett MR et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol 2010; 5 (12): 2154-2165

67. Liangos O, Tighiouart H, Perianayagam MC et al. Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 2009; 14 (6): 423-431

68. Liang XL, Liu SX, Chen YH et al. Combination of urinary kidney injury molecule-1 and interleukin-18 as early biomarker for the diagnosis and progressive assessment of acute kidney injury following cardiopulmonary bypass surgery: a prospecprospective. Biomarkers. 2010; 15 (4): 332-339

69. Ek-Von Mentzer BA, Zhang F, Hamilton JA. Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J Biol Chem 2001; 276(19): 15575-15580

70. Ferguson MA, Vaidya VS, Waikar SS et al. Urinary livertype fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int. 2010; 77 (8): 708-714

71. Negishi K, Noiri E, Doi K et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 2009; 174 (4): 1154-1159

72. Portilla D, Dent C, Sugaya T, et al. Liver fatty acid binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 2008; 73 (4): 465-472

73. Doi K, Noiri E, Sugaya T. Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care. Curr Opin Crit Care 2010; 16 (6): 545-549

74. Nakamura T, Sugaya T, Koide H. Urinary liver type fatty acid binding protein in septic shock: effect of polymyxin B immobilized fiber hemoperfusion. Shock. 2009; 31 (5): 454-459

75. Matsui K, Kamijo-Ikemori A, Hara M et al. Clinical significance of tubular and podocyte biomarkers in acute kidney injury. Clin Exp Nephrol 2011; 15 (2): 220-225

76. Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999; 103 (1): 11-24

77. Endre ZH, Pickering JW, Walker RJ et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 2011; 79 (10): 1119-1130

78. Siew ED, Ikizler TA, Gebretsadik T et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol. 2010; 5 (8): 1497-1505

79. Bulent Gul CB, Gullulu M, Oral B et al. Urinary IL-18: a marker of contrast-induced nephropathy following percutaneous coronary intervention? Clin Biochem 2008; 41(7-8): 544-547

80. Grubb AO. Cystatin C-properties and use as diagnostic marker. Adv Clin Chem. 2000; 35: 63-99

81. Каюков И.Г., Смирнов А.В., Эмануэль В.Л. Цистатин С в современной медицине. Нефрология. 2012; 16 (1): 22-39

82. Abrahamson M, Olafsson I, Palsdottir A, et al. Structure and exexpression of the human cystatin C gene. Biochem J. 1990; 268 (2): 287-294

83. Baxmann AC, Ahmed MS, Marques NC et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008; 3 (2): 348-354

84. Tangri N, Alam A, Giannetti N et al. Predicting glomerular filtration rate in heart transplant recipients using serum creatinine-based equations with cimetidine. J Heart Lung Transpl. 2008; 27 (8): 905-909

85. Herget Rosenthal S, Pietruck F, Volbracht L, et al. Serum cystatin C e a superior marker of rapidly reduced glomerular filtration after uninephrectomy in kidney donors compared to creatinine. Clin Nephrol. 2005; 64 (1): 41-47

86. Conti M, Moutereau S, Zater M, et al. Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med. 2006; 44 (3): 288-291

87. Nejat M, Pickering JW, Walker RJ et al. Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transplant 2010; 25 (10): 3283-3289

88. Briguori C, Visconti G, Rivera N et al. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010; 121 (19): 2117

89. Herget-Rosenthal S, Poppen D, Husing J, et al. Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 2004; 50 (3): 552-558

90. Koyner JL, Bennett MR, Worcester EM, et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int 2008; 74 (8): 1059-1069

91. Nejat M, Pickering JW, Walker RJ, et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010; 14 (3): R85

92. Soto K, Coelho S, Rodrigues B, et al. Cystatin C as a marker of acute kidney injury in the emergency department. Clin J Am Soc Nephrol. 2010; 5 (10): 1745-1754

93. Zhang Z, Lu B, Sheng X et. al. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis. 2012; 59(4): 590-592

94. Haase M, Bellomo R, Haase-Fielitz A. Serum cystatin C may diagnose rather than predict acute kidney injury. Am J Kidney Dis 2012; 59(4): 582

95. Croda-Todd MT, Soto-Montano XJ, Hernández-Cancino PA. Adult cystatin C reference intervals determined by nephelometric immunoassay. Clin Biochem 2007; 40(13-14): 1084-1087

96. Royakkers AA, Korevaar JC, van Suijlen JD et al. Serum and urine cystatin C are poor biomarkers for acute kidney injury and renal replacement therapy. Intensive Care Med 2011; 37(3): 493-501

97. Spahillari A, Parikh CR, Sint K et al. Serum cystatin C-versus creatinine-based definitions of acute kidney injury following cardiac surgery: a prospective cohort study. Am J Kidney Dis 2012; 60(6): 922-929

98. Fricker M, Wiesli P, Brandle M et al. Impact of thyroid dysfunction on serum cystatin C. Kidney Int 2008; 63 (5): 1944-1947

99. Risch L, Herklotz R, Blumberg A et al. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem. 2001; 47 (11): 2055-2059

100. Wegiel B, Jiborn T, Abrahamson M et al. Cystatin C is downregulated in prostate cancer and modulates invasion of prostate cancer cells via MAPK/Erk and androgen receptor pathways. Plos One 2009; 4 (11): 7953

101. Nejat M, Hill JV, Pickering J et al. Albuminuria increases cystatin C excretion: implications for urinary biomarkers. Nephrol. Dial Transplan 2011; 26 (5): 1553-1558


Для цитирования:


Пролетов Я.Ю., Саганова Е.С., Смирнов А.В. Биомаркеры в диагностике острого повреждения почек. Сообщение I. Нефрология. 2014;18(4):25-35.

For citation:


Proletov I.I., Saganova E.S., Smirnov A.V. Biomarkers In The Diagnosis Of Acute Kidney Injury. Communication I. Nephrology (Saint-Petersburg). 2014;18(4):25-35. (In Russ.)

Просмотров: 213


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)