Preview

Нефрология

Расширенный поиск

Хемерин. Роль в регуляции воспаления и возможности изучения в нефрологии

Полный текст:

Аннотация

Хемерин, который представляет собой белок, состоящий из 131-137 аминокислот и экспрессирующийся преимущественно в жировой ткани. Эффекты хемерина реализуются путем воздействия на хемокиноподобный рецептор (chemokine-like receptor 1 - CMKLR1). CMKLR1 экспрессируются на дендритных клетках как миелоидного, так и плазмоидного ряда, тем самым участвуя в реакциях как врождённого, так и приобретенного иммунитета. Помимо метаболических эффектов хемерина, описаны ряд реакций, имеющих прямое или косвенное отношение к воспалительному ответу, в которых хемерин и его рецепторы продемонстрировали свое участие. Хемерин стимулирует адгезию макрофагов к фибронектину, молекулам адгезии - ICAM-1 (intercellular adhesion molecule-1) и VCAM-1 (vascular cell adhesion molecule-1) [29]. Адгезивные эффекты хемерина реализуются через воздействие на CMKLR1, расположенные на мембране макрофагов. Анализ роли хемерина в воспалительном процессе позволяет предполагать его значение в развивающемся воспалении в почечной ткани при гломерулонефрите и тубулоинтерстициальном нефрите. Исследований по данной проблеме в настоящее время недостаточно. Поскольку протеазы непосредственно участвуют в активации прохемерина, связь их высоких концентраций с почечным повреждением, в том числе макрофагальной инфильтрацией и увеличением объема межуточного пространства почечной ткани, может опосредоваться повышенным уровнем активированного хемерина.

Об авторе

М. М. Батюшин
Ростовский государственный медицинский университет
Россия


Список литературы

1. Yamawaki H. Vascular Effects of Novel Adipocytokines: Focus on Vascular Contractility and Inflammatory Responses. Biol Pharm Bull 2011; 34(3): 307-310

2. Nagpal S., Patel S., Jacobe H. et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol 1997; (109): 91-95.

3. Scharadin T.M., Eckert R.L. TIG3: An Important Regulator of Keratinocyte Proliferation and Survival. J Invest Dermatol 2014; doi: 10.1038/jid.2014.79.

4. Wu C.C., Tsai F.M., Shyu R.Y. et al. G protein-coupled receptor kinase 5 mediates Tazarotene-inducedgene 1-induced growth suppression of human colon cancer cells. BMC Cancer 2011; 17(11): 175.

5. Bozaoglu K., Bolton K., McMillan J. et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007; (148): 4687-4694.

6. Goralski K.B., McCarthy T.C., Hanniman E.A. et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 2007; (282): 28175-28188.

7. Roh S.G., Song S.H., Choi K.C. et al. Chemerin - A new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 2007; (362): 1013-1018.

8. Takahashi M., Takahashi Y., Takahashi K. et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett 2008; (582): 573-578

9. Sell H., Divoux A., Poitou C. et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 2010; (95): 2892-2896.

10. Landgraf K., Friebe D., Ullrich T. et al. Chemerin as a Mediator between Obesity and Vascular Inflammation in Children. J Clin Endocrinol Metab 2012; 97(4): 556-564.

11. Muruganandan S., Parlee S.D., Rourke J.L. et al. Chemerin, a novel peroxisome proliferator-activatedreceptor-γ (PPAR-γ) target gene that promotes mesenchymal stemcell adipogenesis. J Biol Chem 2011; (286): 23982-23995.

12. Zabel B.A., Kwitniewski M., Banas M. et al. Chemerin regulation and role in host defense. Am J Clin Exp Immunol 2014; 3(1): 1-19.

13. Zabel B.A., Allen S.J., Kulig P. et al. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 2005; (280): 34661-34666.

14. Du X.-Y., Leung L.L.K. Proteolytic regulatory mechanism of chemerin bioactivity. Acta Biochim Biophys Sin 2009; (4): 973-979.

15. Du X.Y., Zabel B.A., Myles T. et al. Regulation of chemerin bioactivity by plasma carboxypeptidase N., carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J Biol Chem 2009; 284: 751-758.

16. Wittamer V., Bondue B., Guillabert A. et al. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J Immunol 2005; 175: 487-493.

17. Cash J.L., Hart R., Russ A. et al. Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J Exp Med 2008; (205): 767-775.

18. Albanesi C., Scarponi C., Pallotta S. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med 2009; (206): 249-258.

19. Vermi W., Riboldi E., Wittamer V. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med 2005; (201): 509-515.

20. Wittamer V., Franssen J.D., Vulcano M. et al. Specific recruitment of antigenpresenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; (198) 977-985

21. Davenport A.P., Alexander S.P.H., Sharman J.L. et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacol Rev 2013; (65): 967-986.

22. Gantz I., Konda Y., Yang Y.K. et al. Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet. Cell Genet 1996; (74): 286-290.

23. Kaur J., Adya R., Tan B.K. et al. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun 2010; (391): 1762-1768.

24. Samson M., Edinger A.L., Stordeur P. et al. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol 1998; (28): 1689-1700.

25. Martensson U.E., Fenyo E.M., Olde B. and Owman C. Characterization of the human chemerin receptor-ChemR23/CMKLR1-as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology 2006; (355): 6-17.

26. Arita M., Bianchini F., Aliberti J. et al. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 2005; (201): 713-722

27. Arita M., Yoshida M., Hong S. et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA 2005; (102): 7671-7676.

28. Campbell E.L., Louis N.A., Tomassetti S.E. et al. Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB J 2007; (21): 3162-3170

29. Hart R., Greaves D.R. Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5. J Immunol 2010; (185): 3727-3739.

30. Hynes R.O. Integrins: a family of cell surface receptors. Cell 1987; (48): 549-554.

31. Smith C.W. Adhesion molecules and receptors. J Allergy Clin Immunol 2008; 3(2): 375-379

32. Parolini S., Santoro A., Marcenaro E. et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 2007; 109(9): 3625-3632.

33. De Palma G., Castellano G., Del Prete A. et al. The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int 2011; 79(11): 1228-1235.

34. Noessner E., Lindenmeyer M., Nelson P.J., Segerer S. Dendritic Cells in Human Renal Inflammation - Part II. Nephron Exp Nephrol 2011; (119): 91-98.

35. Markovic-Lipkovski J., Muller C.A., Risler T. et al. Association of glomerularand interstitial mononuclear leukocytes with different forms of glomerulonephritis. Nephrol Dial Transplant 1990; (5): 10-17.

36. Heymann F., Meyer-Schwesinger C., Hamilton-Williams E.E. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 2009; (119): 1286-1297.

37. Yoshimura T., Oppenheim J.J. Chemokine-like Receptor 1 (CMKLR1) and Chemokine (C-C motif) Receptor-like 2 (CCRL2); Two Multifunctional Receptors with Unusual Properties. Exp Cell Res 2011; (5): 674-684.

38. Zabel B.A., Nakae S., Zuniga L. et al. Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. J Exp Med 2008; (205): 2207-2220.

39. Yoshimura T., Oppenheim J.J. Chemerin reveals its chimeric nature. J Exp Med 2008; (205): 2187-2190.

40. Leick M., Catusse J., Follo M. et al. CCL19 is a specific ligand of the constitutively recycling atypical human chemokine receptor CRAM-B. Immunology 2009; (129): 536-546.

41. Berg V., Sveinbjornsson B., Bendiksen S. et al. Human articular chondrocytes express ChemR23 and chemerin; ChemR23 promotes inflammatory signalling upon binding the ligand chemerin(21-157). Arthritis Research & Therapy 2010; (12): 228.

42. Vermi W., Riboldi E., Wittamer V. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J of Experim Med 2005; 201(4): 509-515.

43. Hu W., Yu Q., Zhang J., Liu D. Rosiglitazone Ameliorates Diabetic Nephropathy by Reducing the Expression of Chemerin and ChemR23 in the Kidney of Streptozotocin-Induced Diabetic Rats. Inflammation 2012; 35(4): 1287-1293.

44. Pfau D., Bachmann A., L'Ossner U. et al. Serum Levels of the Adipokine Chemerin in Relation to Renal Function. Diabetes Care 2010; 33(1): 171-173.

45. Hu W., Feng P. Elevated serum chemerin concentrations are associated with renal dysfunction in type 2 diabetic patients. Diabetes Researchand Clinical Practice 2011; (91): 159-163.

46. Rutkowski P., Sledzinski T., Zielinska H. et al. Decrease of serum chemerin concentration in patients with end stage renal disease after successful kidney transplantation. Requl Pept 2012; 173(1-3): 55-59.

47. Yamamoto T., Qureshi A.R., Anderstam B. et al. Clinical importance of an elevated circulating chemerin level in incident dialysis patients. Nephrol Dial Transplant 2010; (25): 4017-4023

48. Chen H.Y., Lin C.C., Chiu Y.L. et al. Serum Fetuin A and Chemerin Levels Correlate with Hepatic Steatosis and Regional Adiposity in Maintenance Hemodialysis Patients. PLoS ONE 2012; 7(7): 38415.

49. Carmago S., Shah S.V., Walker P.D. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats. Kidney Int 2002; (61): 959-966.

50. Zeisberg M., Khurana M., Rao V.H. et al. Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med 2006; (3): 100.

51. Chromek M., Tullus K., Hertting O. et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in acute pyelonephritis and renal scarring. Pediatr Res 2003; 53(4): 698-705.

52. Norman L.P., Jiang W., Han X. et al. Targeted disruption of the meprin beta gene in mice leads to underrepresentation of knockout mice and changes in renal gene expression profiles. Mol Cell Biol 2003; (23): 1221-1230.

53. Rao V.H., Meehan D.T., Delimont D. et al. Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 2006; (169): 32-46


Для цитирования:


Батюшин М.М. Хемерин. Роль в регуляции воспаления и возможности изучения в нефрологии. Нефрология. 2014;18(5):8-15.

For citation:


Batyushin M.M. Chemerin. Role in the regulation of inflammation and the possibility of studying in nephrology. Nephrology (Saint-Petersburg). 2014;18(5):8-15. (In Russ.)

Просмотров: 132


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)