МЕХАНИЗМЫ РАЗВИТИЯ И ПРОГРЕССИРОВАНИЯ НЕФРОПАТИИ У БОЛЬНЫХ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ С ХРОНИЧЕСКИМ КАРДИОРЕНАЛЬНЫМ СИНДРОМОМ
https://doi.org/10.24884/1561-6274-2011-15-2-20-29
Аннотация
гипоксические механизмы склеротического повреждения почек. Самым ранним из них является компенсаторное по своей природе сужение эфферентных гломерулярных артериол, способствующее увеличению фильтрационной фракции и появлению стойкой гломерулярной гипертензии, вызывающей механическое повреждение фенестрированного эндотелия, подоцитов и мезангиальных клеток клубочков. В формировании этого внутрипочечного гемодинамического дефекта главную роль играет гиперактивность циркулирующей РААС и почечной тканевой РАС. По мере дальнейшего нарушения постгломерулярного кровотока и появления у лиц с выраженной ХСН анемического синдрома в механизм склеротического
повреждения почек включается почечная тканевая гипоксия, ведущая к развитию и прогрессированию гипоксического гломерулосклероза и тубулоинтерстициального фиброза, ускоряющих потерю почечной функции. В прогрессировании ХБП при ХСН участвует также уремический токсин индоксилсульфат, обладающий выраженным нефротоксическим действием. Для лечения хронической болезни почек у больных ХСН, получающих обычную лекарственную терапию, используются разные терапевтические подходы. Они включают предотвращение нарушений внутрипочечной гемодинамики (коррекция доз ингибиторов АПФ, назначение препаратов с преимущественно печеночным путем элиминации, добавление к ингибиторам АПФ блокаторов АТ1ангиотензиновых рецепторов), ослабление гипоксического повреждения почечной ткани (лечение анемии препаратами эритропоэтина, дарбопоэтина и железа) и снижение повреждающего действия на почки диуретиков и антагонистов рецепторов альдостерона.
Список литературы
1. Ronco C, McCullough P, Anker SD et al. Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative. Eur Heart J 2010; 31 (6): 703-711
2. Smith GL, Lichtman JH, Bracken MG et al. Renal impairment and outcomes in heart failure. Systemic review and meta-analysis. J Am Coll Cardiol 2006; 47 (10): 1987-1996
3. Masson S, Latini R, Milani V et al. Prevalence and prognostic value of elevated urinary albumin excretion in patients with chronic heart failure: data from GISSI-Heart Failure trial. Circ Heart Fail 2010; 3 (1): 65-72
4. Jackson CE, Solomon SD, Gerstein HC et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 2009; 374 (9689): 543-550
5. Yoshida H, Yashiro M, Ping Liang et al. Mesangiolytic glomerulopathy in severe congestive heart failure. Kidney Int 1998; 53 (4): 880-891
6. Kjaer A, Hesse B. Heart failure and neuroendocrine activation: diagnostic, prognostic and therapeutic perspective. Clin Physiol 2001; 21 (6): 661-672
7. Remes J, Tikkanen I, Fyhrqust F, Pyorala K. Neuroendocrine activity in untreated heart failure. Brit Heart J 1991; 65 (2): 249-255
8. Ситникова МЮ, Беляева ОД, Сычева ЮА и др. Гемодинамические и локальные натрийуретические системы почек при начальных стадиях сердечной недостаточности.Влияние длительной терапии периндоприлом. Кардиология 2000; 40 (9): 64-68
9. Ljungman S., Laragh J.H., Cody R.J. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs 1990; 39 [Suppl. 4]: 10-21
10. Margi P, Rao A, Cangianiello S et al. Early impairment of renal hemodynamic reserve in patients with asymptomatic heart failure is restored by angiotensin II antagonism. Circulation 1998; 98 (25): 28-49-2854
11. Nishikimi T, Ochino K, Frohlich ED. Effects of alpha 1-adrenergic blockade on intrarenal hemodynamics in heart failure rats. Am J Physiol 1992; 262 (2, Pt 2): R198-R203
12. Numabe A, Komatsu K, Frohlich ED. Intrarenal hemodynamics in low- and high-output cardiac failure rats. Am J Med Sci 1994; 308 (6): 331-337
13. Yoshida H, Matsushima H. Machiguchi T et al. Glomerular hyperfiltration and sclerosis in chronic heart failure. J Am Soc Nephrol 1995; 6 (3): 689 (Abstract)
14. Кузьмин ОБ, Бучнева НВ, Пугаева МО. Почечные гемодинамические механизмы формирования гипертонической нефропатии. Нефрология 2009; 13 (4): 28-36
15. Акаемова ОН, Коц ЯИ, Синицын ВЕ. Состояние периферической и внутрисердечной венозной системы сердца при хронической сердечной недостаточности. Терархив 2009; 81 (12): 27-30
16. Mullens W, Abrahams Z, Francis GS et al. Importance of venous congestion for worsening of renal function in advanced decompensated renal failure. J Am Coll Cardiol 2009; 53 (7): 589-596
17. Damman K, Van Deursen VM, Navis G et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 2009; 53 (7): 582-558
18. Abildgaard U. Hemodynamics and functional changes during renal venous stasis in dog kidney. Dan Med Bull 1989; 36 (3): 212-222
19. Doty JM, Saggi BH, Sugerman HJ et al. Effect of increased renal venous pressure on renal function. J Trauma 1999; 47 (6): 1000-1003
20. Bresis M, Rosen S, Silva P, Epstein FH. Renal ischemia: A new perspective. Kidney Int 1984; 26 (4): 375-383
21. Higgins DF, Kimura K, Iwano M, Haase VH. Hypoxiainducible factor signaling in the development of tissue fibrosis. Cell Cycle 2008; 7 (9): 1128-1132
22. Bemhardt WM, Campean V, Kany S et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J AM Soc Nephrol 2006; 17 (7): 1970-1980
23. Song YR, You SJ, Lee YM et al. Activation of hypoxia- inducible factor attenuates renal injury in rat remnant kidney. Nephrol Dial Transplant 2010; 25 (1): 77-85
24. Orphanides C, Fine LG, Norman JT. Hypoxia stimulates proximal tubular cell matrix production via a TGF-β1- independent mechanism. Kidney Int 1997; 52 (3): 637-647
25. Norman JT, Fine LG. Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol 2006; 33 (10): 989-996
26. Neumann AK, Yang J, Biju MP et al. Hypoxia inducible factor 1б regulates T-cell receptor signal transduction. Proc Natl Acad Sci 2005; 102 (47): 17071-17076
27. Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 2009; 20 (7): 332-340
28. Subtirelu M, Gershin I, Teichman J, Tufro A. A novel model of chronic hypoxia-induced glomerulomegaly (Abstract). J Am Soc Nephrol 2005; 16: 668A
29. Brukamp K, Jin B, Moeller M, Haase VH. Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am J Physiol Renal 2007; 293 (4): F1397-F1407
30. Neusser MA, Lindenmeyer MT, Moll AG et al. Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am J Pathol 2010; 176 (2): 594-607
31. Rodriquez-Diez R, Carvajal-Gonzales G, Sancher-Lopes E et al. Pharmacological modulation of epithelial-mesenchymal transition caused by angiotensin II. Role of ROCK and MAPK pathways. Pharm Res 2008; 25 (10): 2447-2461
32. Nangaki M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006; 17 (1): 17-25
33. Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008; 74 (7): 867-872
34. Higgins DF, Kimura K, Bernhardt WM et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial- to-mesenchymal transition. J Clin Invest 2007; 117 (12): 3810- 3820
35. Sun S, Ning X, Zhang Y et al. Hypoxia-inducible factor alpha induces Twist expression in tubular epithelial cells subjected to hypoxia leading to epithelial-to-mesenchymal transition. Kidney Int 2009; 75 (12): 1278-1287
36. Guo LP, Huang HC, Li JZ. Hypoxia induces the expression and secretion of connective tissue growth factor and fibronectin by cultured renal cortical myofibroblasts. Beijing Da Hue Bao 2007; 39 (1): 67-71
37. Namba S, Okuda Y, Morimoto A et al. Indoxyl sulfate is a useful predictor for progression of chronic kidney disease. Rinsho Byori 2010; 58 (5): 448-453
38. Miyazaki T, Ise M, Seo H et al. Indoxyl sulfate increases the gene expression of TGF-в1, TIMP-1 and proб(1) collagen in uremic rat kidney. Kidney Int 1997; 52 [Suppl]: S15-S22
39. Motojima M, Hosokawa A, Yamamoto H et al. Uremic toxins of organic anions upregulate PAI-1 expression by induction of NF-kB and free radicals in proximal tubular cells. Kidney Int 2003; 63 (6): 1671-1680
40. Gelasco AK, Raymond JR. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am J Physiol Renal 2006; 290 (6): F1551-1558
41. Namba S, Okuda Y, Morimoto A et al. A serum indoxyl sulfate is a useful predictor of chronic kidney disease. Rinsho Byori 2010; 58 (5): 448-453
42. Shibahara H, Shibahara N. Cardiorenal protective effects of the oral uremic toxin adsorbent AST-120 in chronic heart disease patients with moderate CKD. J Nephrol 2010; 23 (5): 535-540
43. Ahmed A, Love TE, Sui X, Rich MW. Effects of angiotensin-converting enzyme inhibitors in systolic heart failure patients with chronic kidney disease: a propensity score analysis. J Card Fail 2006; 12 (7): 499-506
44. Berger AK, Duvals S, Manske C et al. Angiotensin- converting enzyme inhibitors and angiotensin receptor blockers in patients with congestive heart failure and chronic kidney disease. Am Heart J 2007; 153 (6): 1064-1073
45. Whaley-Connell A, Habibi J, Johnson M et al. Nebivolol reduces proteinuria and renal NADPH oxidase-generated reactive oxygen species in the transgenic Ran2 rat. J Am Nephrol 2009; 30 (4): 356-360
46. Wong WY, Laping NG, Helson AH et al. Renoprotective effects of carvedilol in hypertensive-stroke prone rats may involve inhibition of TGFв expression. Brit J Pharmacol 2001; 134 (5): 977-984
47. Cohen-Solal A, Kotecha D, van Veldhuisen DJ et al.Efficacy and safety of nebivolol in elderly heart failure patients with impaired renal function: insights from RENIORS trial. Eur J Heart Fail 2009; 11 (9): 872-880
48. Groenveld HF, Januzzi JC, Damman K et al. Anemia and mortality in heart failure patients. A systematic review and meta-analysis. J Am Coll Cardiol 2008; 52 (10): 818-827
49. Palazzuoli A, Qvatrini I, Calabro A et al. Anemia correction by erythropoietin reduces BNP levels, hospitalization rate and NYHA class in patients with cardio-renal anemia syndrome. Clin Exp Med 2010;
50. Ahmed A, Husain A, Love TE et al. Heart failure, chronic diuretic use and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J 2006; 27 (12): 1431-1439
51. Ahmed A, Young JB, Love TE et al. A propensity-matched study of the effects of chronic diuretic therapy on mortality and hospitalization in older adults with heart failure. Int J Cardiol 2008; 125 (2): 246-253
52. Tamirisa KP, Aaronson KD, Koelling TM. Spironolactone- induced renal insufficiency and hyperkaliemia in patients with heart failure. Am Heart J 2004; 148 (6): 971-978
53. Национальные рекомендации ВНОК и ОССН по диагностике и лечению ХСН (третий пересмотр). Журнал Сердечная недостаточность 2009; 10 (2): 64-106
Рецензия
Для цитирования:
КУЗЬМИН О.Б. МЕХАНИЗМЫ РАЗВИТИЯ И ПРОГРЕССИРОВАНИЯ НЕФРОПАТИИ У БОЛЬНЫХ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ С ХРОНИЧЕСКИМ КАРДИОРЕНАЛЬНЫМ СИНДРОМОМ. Нефрология. 2011;15(2):20-29. https://doi.org/10.24884/1561-6274-2011-15-2-20-29
For citation:
KUZMIN O.V. MECHANISMS OF NEPHROPATHY DEVELOPMENT AND PROGRESSION IN HEART FAILURE PATIENTS WITH CHRONIC CARDIORENAL SYNDROME. Nephrology (Saint-Petersburg). 2011;15(2):20-29. (In Russ.) https://doi.org/10.24884/1561-6274-2011-15-2-20-29