Preview

Nephrology (Saint-Petersburg)

Advanced search

COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASE. MESSAGE ONE

https://doi.org/10.24884/1561-6274-2018-22-4-57-73

Abstract

Interest in studying the role of the gastrointestinal tract in maintaining homeostasis in chronic kidney disease is a traditional one. It served, in particular, as a starting point for the  creation of enterosorbents. However, if earlier the main attention  was paid to the mechanical removal of a number of potentially  dangerous biologically active substances, recently an intestinal  microbiota has become an object of interest. The first part of the  literature review on this topic is devoted to questions of terminology, the normal physiology of the colon microbiota. A  detailed description of dysbiosis is given. The features of the main  groups of microorganisms are reflected. The hypothetical and  confirmed interrelations of the intestine-kidney axis are presented.  The pathogenetic mechanisms of the colon dysbiosis influence on the processes of local and systemic inflammation are discussed. The  influence of dysbiosis on the state of the kidney parenchyma and its  participation in the progression of CKD are debated.

About the Authors

B. G. Lukichev
First Pavlov St.Petersburg State Medical University
Russian Federation

197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54

Prof. Boris G. Lukichev MD, PhD, DMedSci, Department of propedeutics of internal diseases. Phone: (812)-234-01-65



A. Sh. Rumyantsev
First Pavlov St.Petersburg State Medical University Saint Petersburg State University
Russian Federation

197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54

199106 Russia, Saint Petersburg, V.O., 21 line 8a.

Prof. Alexandr Sh.Rumyantsev MD, PhD, DMedSci, Department of Faculty Therapy Phone: +7(812) 326-03-26



V. Akimenko
First Pavlov St.Petersburg State Medical University
Russian Federation

197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54

Department of propedeutics of internal diseases. Phone: (812)-
234-01-65



References

1. Лукичёв БГ, Стрелко ВВ. Утраченные перспективы. Нефрология 2015;19(1):18-20. [Lukichev BG, Strelko VV. Lost prospects. Nephrology (Saint-Petersburg) 2015;19(1):18-20. (In Russ.)]

2. Лукичёв БГ, Подгаецкая ОЮ, Карунная АВ, Румянцев АШ. Индоксил сульфат при хронической болезни почек. Нефрология 2014; 18 (1): 25-32. [Lukichev BG, Karunnaya AV, Rumyantsev ASh. Indoxyl sulphate at chronic kidney disease. Nephrology (Saint- Petersburg) 2014; 18 (1): 25-32]

3. Ramezani A, Raj D S. The Gut Microbiome, Kidney Disease, and Targeted Interventions. J Am Soc Nephrol 2014; 25(4): 657–670. doi: 10.1681/ASN.2013080905

4. Vaziri ND. Effect of Synbiotic Therapy on Gut–Derived Uremic Toxins and the Intestinal Microbiome in Patients with CKD. Clin J Am Soc Nephrol 2016; 11(2): 199-201. doi: 10.2215/CJN.13631215

5. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22:283-307

6. Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017;49(12):2083-2090. doi: 10.1007/s00726-017-2493-3

7. Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N. The Role of the Gut Microbiota in Bile Acid Metabolism. Ann Hepatol 2017 Nov;16(Suppl. 1: s3-105.):s15- s20. doi: 10.5604/01.3001.0010.5494

8. Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med 2017;5(2):36. doi: 10.21037/atm.2016.12.70

9. Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microbes 2014 May-Jun;5(3):411-418. doi: 10.4161/gmic.29330

10. Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci (Landmark Ed) 2011;16:1768-1786

11. Mardinoglu A, Shoaie S, Bergentall M et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 2015; 11(10):834. doi:10.15252/msb.20156487

12. Han GG, Lee JY, Jin GD et al. Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl Microbiol Biotechnol 2017;101(14):5903–5911. doi:10.1007/s00253-017-8304-8307

13. Rist VT, Weiss E, Eklund M, Mosenthin R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Anim Int J Anim Biosci 2013; 7(7):1067–1078. doi:10.1017/S1751731113000062

14. Bäckhed F, Fraser CM, Ringel Y et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 2012;12(5):611–622. doi: 10.1016/j.chom.2012.10.012

15. Arumugam M, Raes J, Pelletier E et al. Enterotypes of the human gut microbiome. Nature 2011;473: 174-180. doi: 10.1038/nature09944

16. Ley RE, Backhed F, Turnbaugh P et al. Obesity alters gut microbial ecology. Proc. Natl Acad Sci USA 2005; 102: 11070-11075. doi:10.1073/pnas.0504978102

17. Ley R, Turnbaugh PJ, Klein S, Gordon JI. Microbial Ecology: Human gut microbes associated with obesity January Nature 2007; 444(7122):1022-1023. doi: 10.1038/4441022a

18. Schwiertz A, Taras D, Schafer K et al. Microbiota and SCFA in lean and overweight healthy subjects Obesity, 2010; 18: 190-195

19. Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: techniques, indications, and outcomes Gastrointest. Endosc 2013; 78: 240-249

20. Patil DP, Dhotre DP, Chavan SG et al. Molecular analysis of gut microbiota in obesity among Indian individuals. J Biosci 2012; 37: 647-657

21. Tims S, Derom C, Jonkers DM et al. Microbiota conservation and BMI signatures in adult monozygotic twins ISME J. 2013; 7: 707-717

22. Verdam FJ, Fuentes S, de Jonge C et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity Obesity, 2013; 21: E607-E615

23. Ferrer M, Ruiz A, Lanza F et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 2013; 15: 211-226

24. Furet JP, Kong LC, Tap J et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010; 59: 3049-3057

25. Bervoets L, Van Hoorenbeeck K, Kortleven I et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog 2013; 5: p. 10

26. Collado MC, Derrien M, Isolauri E et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 2007; 73: 7767-7770

27. Backhed F, Ding H, Wang T et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004;101(44):15718-15723

28. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90(3):859–904 10.1152/physrev.00045.2009

29. Шендеров БА. Нормальная микрофлора и ее роль в поддержании здоровья человека. Росс журн гастроэнтерол, гепатол, колопроктол 1998; (1): 61-65 [Shenderov BA. Normal microflora and its role in maintaining human health. Ross journal gastroenterol, hepatol, coloproctol 1998; (1): 61-65]

30. Бабин ВН, Минушкин ОМ, Дубинин АВ. Молекулярные основы симбиоза в системе «хозяин – микрофлора». Росс журн гастроэнтерол, гепатол и колопроктол 1998; (6): 76- 82 [Babin VN, Minushkin OM, Dubinin AV. Molecular basis of symbiosis in the host- microflora system. Ross journal gastroenterol, hepatol and coloproctol 1998; (6): 76-82]

31. Бондаренко ВМ, Боев БВ, Лыкова ЕА, Воробьев АА. Дисбактериозы желудочно- кишечного тракта. Росс журн гастроэнтерол, гепатол, колопроктол 1999; (1): 66-70 [Bondarenko VM, Boev BV, Lykova EA, Vorobiev AA. Dysbacteriosis of the gastrointestinal tract. Ross journal gastroenterol, hepatol, coloproctol 1999; (1): 66-70]

32. Яхонтова ОМ, Рутгайзер ЯМ, Валенкевич ЛН. Хронические болезни кишечника. СПб., 2002: 320 [Yakhontova OM, Rutgaizer YaM, Valenkevich LN. Chronic intestinal diseases. SPb., 2002: 320]

33. Шептулин АА. Синдром избыточного роста бактерий и «дисбактериоз кишечника»: их место в современной гастроэнтерологии. Росс журн гастроэнтерол, гепатол, колопроктол 1999; (3): 51-55 [Sheptulin AA. Syndrome of excess bacterial growth and «intestinal dysbacteriosis»: their place in modern gastroenterology. Ross journal gastroenterol, hepatol, coloproctol 1999; (3): 51-55]

34. Циммерман ЯС. Диагностика и комплексное лечение основных гастроэнтерологических заболеваний. Пермь, 2003: 288 [Zimmerman YaS. Diagnosis and comprehensive treatment of major gastroenterological diseases. Perm, 2003: 288]

35. Бельмер СВ, Малкоч АВ. Кишечная микрофлора и значение пребиотиков для ее функционирования. Леч Врач 2006; (4): 58 [Belmer SV, Malkovich AV. Intestinal microflora and the importance of prebiotics for its functioning. Lech the Doctor 2006; (4): 58]

36. Ардатская МД, Минушкин ОН. Современные принципы диагностики и фармакологической коррекции. Гастроэнтерология, приложение к журналу Consilium Medicum 2006; 8 (2): 4-17 [Ardatskaya MD, Minushkin ON. Modern principles of diagnostics and pharmacological correction. Gastroenterology, an appendix to the journal Consilium Medicum 2006; 8 (2): 4-17]

37. Ардатская МД, Бельмер СВ, Добрица ВП и др. Дисбиоз (дисбактериоз) кишечника: современное состояние проблемы, комплексная диагностика и лечебная коррекция. Экспериментальная и клиническая гастроэнтерология 2015; 5(117): 13-50 [Ardatskaya MD, Belmer SV, Dobritsa VP and others. Disbiosis (dysbacteriosis) of the intestine: the current state of the problem, comprehensive diagnosis and treatment correction. Experimental and clinical gastroenterology 2015; 5 (117): 13-50]

38. Rajilić-Stojanović M, Heilig HGHJ, Tims S et al. Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol 2012; 15:1146–1159. 10.1111/1462-2920.12023

39. Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota- derived bile acids. Nat Chem Biol 2015; 11: 685–690. doi: 10.1038/nchembio.1864

40. Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol Aspects Med 2017; 56:54-65. doi: 10.1016/j.mam.2017.06.002

41. DeAguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab 2013; 17(5): 657–669 doi: 10.1016/j.cmet.2013.03.013

42. Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol 2014;16(7):1004-1013. doi: 10.1111/cmi.12301

43. Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol 2015;159(2):122- 127. doi: 10.1016/j.clim.2015.05.014

44. Hippe B, Zwielehner J, Liszt K et al. Quantification of butyryl CoA: acetate CoA- transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett 2011; 316:130-135

45. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. mBio 2014; 5:e00889-00814

46. Manchali S, Chidambara Murthy KN, Patil BS. Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 2012; 4:94-106

47. Guilloteau P, Martin L, Eeckhaut V et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010; 23:366-384

48. Ардатская МД, Пробиотики, пребиотики и метабиотики в коррекции микроэкологических нарушений кишечника. Медицинский совет 2015; (13): 94-99 [Ardatskaya MD., Probiotics, Prebiotics and Metabiotics in Correction of Microecological Disorders of the Intestine. Medical Council 2015; (13): 94-99]

49. Хавкин АИ, ред. Микрофлора пищеварительного тракта. Фонд социальной педиатрии. М., 2006: 416 [Khavkin AI, ed. Microflora of the digestive tract. Fund of Social Pediatrics. M.: 2006: 416]

50. Барановский АЮ, Кондрашина ЭА. Дисбактериоз кишечника. Питер, СПб., 2008: 240 [Baranovsky AYu, Kondrashina EA. Dysbacteriosis of the intestine. Peter, SPb., 2008: 240]

51. Яковенко ЭП. Дисбактериоз кишечника. Лечебное дело 2004; (3): 3-8 [Yakovenko EP. Dysbacteriosis of the intestine. Medical case 2004; (3): 3-8]

52. Ткаченко ЕИ, Суворов АН, ред. Дисбиоз кишечника. Руководство по диагностике и лечению. ИнформМед, СПб., 2009: 282 [Tkachenko EI, Suvorov AN, ed. Disbiosis of the intestine. Guide to diagnosis and treatment. InformMed, 2009: 282]

53. Floch MH, Ringel Y, Walker WA. The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis. Academic Press, 2016: 442

54. Vanholder R, Glorieux G. The intestine and the kidneys: a bad marriage can be hazardous. Clinical Kidney Journal 2015; 8(2):168-179. doi:10.1093/ckj/sfv004

55. Felizardo FR, Castoldi A, Andrade-Oliveira V, Saraiva NO. The microbiota and chronic kidney diseases: a double-edged sword. Clin Transl Immunology 2016; 5(6): e86.doi: 10.1038/cti.2016.36

56. Vaziri ND, Zhao Y, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrology Dialysis Transplantation 2016;31(5):737-746. doi: 10.1093/ndt/gfv095

57. Vaziri ND, Wong J, Pahl M et al. Chronic kidney disease alters the composition of intestinal microbial flora. Kidney Int 2013; 83: 308–315

58. Strid H, Simrén M, Stotzer PO et al. Patients with chronic renal failure have abnormal small intestinal motility and a high prevalence of small intestinal bacterial overgrowth. Digestion 2003; 67(3):129-137

59. Wong J, Piceno YM, DeSantis TZ et al. Expansion of urease-and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014; 39: 230–237

60. Schepers E, Glorieux G, Vanholder R. The gut: the forgotten organ in uremia? Blood Purif 2010; 29: 130–136

61. Wang F, Jiang H, Shi K et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton) 2012; 17: 733–738

62. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013; 37: 1–6

63. Pahl MV, Vaziri ND.The Chronic Kidney Disease – Colonic Axis. Semin Dial 2015;28(5):459- 463. doi: 10.1111/sdi.12381

64. Bossola M, Sanguinetti M, Scribano D et al. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients. Clin J Am Soc Nephrol 2009; 4: 379–385

65. Shi K, Wang F, Jiang H et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 2014; 59:2109–2117

66. Feroze U, Kalantar-Zadeh K, Sterling KA et al. Examining associations of circulating endotoxin with nutritional status, inflammation, and mortality in hemodialysis patients. J Ren Nutr 2012; 22: 317–326

67. Niwa T, Shimizu H. Indoxyl sulfate induces nephrovascular senescence. J Ren Nutr 2012; 22: 102–106

68. Soulage CO, Koppe L, Fouque D. Protein-bound uremic toxins … new targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J Ren Nutr 2013; 23(6):464-466. doi: 10.1053/j.jrn.2013.06.003

69. Sampaio-Maia B, Simoes-Silva L, Pestana M et al. The Role of the Gut Microbiome on Chronic Kidney Disease. Advances in Applied Microbiology 2016; 96: 65-94

70. Prokopienko AJ, Nolin TD. Microbiota-Derived Uremic Retention Solutes: Perpetrators of Altered Nonrenal Drug Clearance in Kidney Disease. Expert Rev Clin Pharmacol 2018; 11(1): 71–82. doi:10.1080/17512433.2018.1378095

71. Adijiang A, Shimizu H, Higuchi Y et al. Indoxyl sulfate reduces klotho expression and promotes senescence in the kidneys of hypertensive rats. J Ren Nutr 2011; 21: 105–109

72. Adelibieke Y, Shimizu H, Muteliefu G et al. Indoxyl sulfate induces endothelial cell senescence by increasing reactive oxygen species production and p53 activity. J Ren Nutr 2012; 22: 86–89

73. Gelasco AK, Raymond JR, Andrew K. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am J Physiol Renal Physiol 2006; 290: 1551–1558

74. Miyamoto Y, Watanabe H, Otagiri M, Maruyama T. New insight into the redox properties of uremic solute indoxyl sulfate as a pro- and antioxidant. Ther Apher Dial 2011; 15: 129–131

75. Tumur Z, Shimizu H, Enomoto A et al. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stressinduced NF-kappaB activation. Am J Nephrol 2010; 31: 435–441

76. Niwa T, Ise M, Miyazaki T. Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am J Nephrol 1994; 14: 207–212

77. Kobayashi N, Maeda A, Horikoshi S et al. Effects of oral adsorbent AST-120 (Kremezin) on renal function and glomerular injury in early-stage renal failure of subtotal nephrectomized rats. Nephron 2002; 91: 480–485

78. Schroeder JC, Dinatale BC, Murray IA et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 2010; 49: 393–400

79. Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X. The aryl hydrocarbon receptor system. Drug Metabol Drug Interact 2012; 27: 3–8

80. Ichii O, Otsuka-Kanazawa S, Nakamura T et al. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand, PLoS One 2014; 9 (9): e108448. doi: 10.1371/journal.pone.0108448

81. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 2014; 5(2): 202–207

82. Afsar B, Vaziri ND, Aslan G et al. Gut hormones and gut microbiota: implications for kidney function and hypertension. J Am Soc Hypertens 2016; 10(12): 954–961

83. Coppo R. The intestine-renal connection in IgA nephropathy. Nephrol Dialysis Transplantation 2015; 30 (3): 360–366

84. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med 2013; 368 (25):2402–2414

85. Floege J, Feehally J. The mucosa-kidney axis in IgA nephropathy. Nat Rev Nephrol 2016; 12 (3): 147–156

86. McCarthy DD, Kujawa J, Wilson C et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 2011; 121 (10): 3991–4002

87. De Angelis M, Montemurno E, Piccolo M et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One 2014; 9 (6): e99006

88. Piccolo M, De Angelis M, Lauriero G et al. Salivary microbiota associated with immunoglobulin A nephropathy. Microb Ecol 2015; 70 (2): 557–565

89. Qin W, Zhong X, Fan JM et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dialysis Transplantation 2008; 23 (5): 1608–1614

90. Han L, Fang X, He Y, Ruan XZ. ISN forefronts symposium 2015: IgA nephropathy, the gut microbiota, and gut- kidney crosstalk. Kidney Int Rep 2016; 1(3): 189–196

91. Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg (London, England) 2016; 36 (Pt D): 607–612

92. Suryavanshi MV, Bhute SS, Jadhav SD et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures, Sci Rep 2016; 6: 34712

93. Robijn S, Hoppe B, Vervaet BA et al. Hyperoxaluria: a gutkidney axis? Kidney Int 80 (11) (2011) 1146–1158

94. Lange JN, Mufarrij PW, Wood KD et al. The association of cardiovascular disease and metabolic syndrome with nephrolithiasis. Curr Opin Urol 2012; 22 (2): 154–159

95. Stern JM, Moazami S, Qiu Y et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 2016; 44 (5): 399–407

96. Siva S, Barrack ER, Reddy GP et al. A critical analysis of the role of gut Oxalobacter formigenes in oxalate stone disease. BJU Int 103 2009; (1): 18–21

97. Jalanka-Tuovinen J, Salonen A, Nikkila J et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 2011; 6 (7): e23035

98. Kaufman DW, Kelly JP, Curhan GC et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol JASN 2008; 19 (6): 1197–1203

99. Siener R, Bangen U, Sidhu H et al. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83 2013; (6): 1144–1149

100. Ivanovski O, Drueke TB. A new era in the treatment of calcium oxalate stones? Kidney Int 2013; 83 (6): 998–1000

101. Khoury T, Tzukert K, Abel R et al. The gut-kidney axis in chronic renal failure: A new potential target for therapy. Hemodialysis International 2017; 21:323–334


Review

For citations:


Lukichev B.G., Rumyantsev A.Sh., Akimenko V. COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASE. MESSAGE ONE. Nephrology (Saint-Petersburg). 2018;22(4):57-73. (In Russ.) https://doi.org/10.24884/1561-6274-2018-22-4-57-73

Views: 11339


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)