Preview

Нефрология

Расширенный поиск

БИОМАРКЕРЫ В ДИАГНОСТИКЕ ОСТРОГО ПОВРЕЖДЕНИЯ ПОЧЕК. СООБЩЕНИЕ II

Полный текст:

Аннотация

В последние несколько лет все большее внимание привлекает возможность использования биомаркеров в диагностике острого повреждения почек. Данный факт обусловлен рядом недостатков таких традиционных параметров, как концентрации креатинина и мочевины сыворотки крови, измерение темпа диуреза, которые, с одной стороны, зависят от ряда экстраренальных факторов, с другой - их изменение происходит на поздних, необратимых этапах повреждения почечной ткани. В данной статье проанализированы возможности использования ряда маркеров в ранней диагностике различных вариантов ОПП. В публикующейся второй части работы рассматривается возможность использования в качестве биомаркеров ОПП низкомолекулярных белков мочи (альфа1-микроглобулин, бета2-микроглобулин и др.), внутриклеточных ферментов, микро-РНК, а также панели нескольких маркеров.

Об авторах

Я. Ю. Пролетов
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


Е. С. Саганова
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


А. В. Смирнов
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


Р. В. Зверьков
Первый Санкт-Петербургский государственный университет им. акад. И.П. Павлова
Россия


Список литературы

1. Tolkoff-Rubin N.E., Rubin R.H., Bonventre J.V. Noninvasive renal diagnostic studies. Clin Lab Med 1988; 8(3): 507-526.

2. Herget-Rosenthal S., Poppen D., Husing J. et al. Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 2004; 50(3): 552-8.

3. Emeigh Hart S.G. Assessment of renal injury in vivo. J Pharmacol Toxicol Methods 2005; 52(1): 30-45.

4. Wolf M.W., Boldt J. Kidney specific proteins: markers for detection of renal dysfunction after cardiac surgery? Clin Res Cardiol 2007; Suppl. 2: 103-107.

5. Penders J., Delanghe J.R. Alpha 1-microglobulin: clinical laboratory aspects and applications. Clin Chim Acta 2004; 346(2): 107-118.

6. Bernard A.M., Vyskocil A.A., Mahieu P. et al. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin. Chem 1987; 33(6): 775-779.

7. Warning S., Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clinical Toxicology 2011; 49(8): 720-728.

8. D’Amico G., Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens 2003; 12 (6): 639-643.

9. Sushrut S., Waikar J., Bonventre V. Biomarkers for the Diagnosis of Acute Kidney Injury. Nephron Clin Pract 2008; 109(4): 192-197.

10. Westhuyzen J., Endre Z.H., Reece G. et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplan. 2003; 18(3): 543-551.

11. Geus H., Betjes M., Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J 2012; 5(2): 102-108.

12. Price R.G. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol 1992; 38(1): 14-19.

13. Mukhopadhyay B., Chinchole S., Lobo V. et al. Enzymuria pattern in early port renal transplant period: diagnostic usefulness in graft dysfunction. Indian J Clin Biochem 2004; 19(2): 14-19.

14. Liangos O., Han W.K., Wald R. et al. Urinary kidney injury-molecule-1 (KIM-1) and N-acetyl (b)-D-glucosaminidase (NAG) levels in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). J Am Soc Nephrol 2005; 16: 318A.

15. Vaidya V.S.,Waikar S.S., Ferguson M.A., et al. Urinary biomarkers for sensitiveand specific detection of acute kidney injury in humans. Clin Transl Sci 2008; 1(3): 200-208.

16. Xu Z., Yang J., Yu J. et al. Effects of BSO, GSH, Vit-Cand DMPS on the nephrotoxicity of mercury. ToxicolIndHealth 2007; 23(7): 403-410.

17. Ali B.H., Al Moundhri M.S., Tag Eldin M. et al. The ameliorative effect of cysteine prodrug L-2-oxothiazolidine-4-carboxylic acid on cisplatin-induced nephrotoxicity in rats. Fundam Clin Pharmacol 2007; 21(5): 547-553.

18. Oktem F., Ozguner F., Sulak O et al. Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Mol Cell Biochem 2005; 277(1-2): 109-115.

19. Bondiou, M.T., Bourbouze, R., Bernard, M. et al. Inhibition of A and B N-acetyl-beta-d-glucosaminidase urinary isoenzymes by urea. Clin Chim Acta 1985; 149(1): 67-73.

20. Iqbal M.P., Ali A.A., Waqar M.A. et al. Urinary Nacetyl-beta-d-glucosaminidase in rheumatoid arthritis. Exp Mol Med 1998; 30(3): 165-169.

21. Fujita H., Narita T., Morii T et al. Increased urinary excretion of N-acetylglucosaminidase in subjects with impaired glucose tolerance. Ren Fail 2002; 24(1): 69-75.

22. Tominaga M., Fujiyama, K., Hoshino T. et al. Urinary N-acetyl-beta-dglucosaminidase in the patients with hyperthyroidism. Horm Metab Res 1989; 21(8): 438-40.

23. Engel L.S., Taioli E., Pfeiffer R. et al. Pooled analysis and meta-analysis of glutathioneS-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol 2002; 156(2): 95109.

24. Branten A.J., Mulder T.P., Peters W.H. et al. Urinary excretion of glutathione-S-transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron 2000; 85(2): 120-6.

25. Bruning T., Sundberg A.G., Birner G. et al. Glutathione transferase alpha as a marker for tubular damage after trichloroethylene exposure. Arch Toxicol 1999; 73(4-5): 246-254.

26. Bruning T., Thier R., Mann H. et al. Pathological excretion patterns of urinary proteins in miners highly exposed to dinitrotolu-ene. J Occup Environ Med 2001; 43(7): 610-615.

27. Walshe C.M., Odejayi F., Ng S. et al. Urinary glutathione-S-transferase as an early marker for renal dysfunction in patients admitted to intensive care with sepsis. Crit Care Resusc 2009; 11(3): 204-209.

28. Santos C., Marcelino P., Carvalho T. et al. The value of tubular enzymes for early detection of acute kidney injury after liver transplantation: an observational study. Transplant Proc 2010; 42(9): 3639-3643.

29. Whiting P.H., Brown P.A. The relationship between enzy-muria and kidney enzyme activities in experimental gentamicin nephrotoxicity. Ren Fail 1996; 18(6): 899-909.

30. Jenderny S., Lin H., Garrett T. et al. Protective effects of a glutathione disulfi de mimetic (NOV-002) against cisplatin induced kidney toxicity. Biomed Pharmacother 2010; 64(1): 73-76.

31. Naghibi B., Ghafghazi T., Hajhashemi V. et al. Vancomycin-induced nephrotoxicity in rats: is enzyme elevation a consistent finding in tubular injury? J Nephrol 2007; 20(4): 482-488.

32. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.

33. Wessely O., Agrawal R., Tran U. MicroRNAs in kidney development: lessons from the frog. RNA Biol 2010; 7(3): 296-299.

34. Krupa A., Jenkins R., Luo D.D. et al. MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010, 21(3), pp. 438-47.

35. Lee S.O., Masyuk T., Splinter P. et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 2008; 118(11): 3714-24.

36. Xiong M., Jiang L., Zhou Y. et al. The miR-200 family regulates TGF-b1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 2012; 302(3): F369-379.

37. Godwin J.G., Ge X., Stephan K. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA 2010; 107(32): 14339-14344.

38. Aguado-Fraile E., Ramos E., Sáenz-Morales D. et al. miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLoS One 2012; 7(9): e44305.

39. Liu F., Lou Y.L., Wu J. et al. Upregulation of MicroRNA-210 regulates renal angiogenesis mediated by activation and in vitro. Kidney Blood Press Res 2012; 35(3): 182-91.

40. Lorenzen J.M., Kielstein J.T., Hafer C. et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 2011; 6(7): 1540-6.

41. Saikumar J., Hoffmann D., Kim T.M. et al. Expression, circulation and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 2012; 129(2): 256-267.

42. Lan Y.F., Chen H.H., Lai P.F. et al. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 2012; 23(12): 2012-2023.

43. Aguado-Fraile E., Ramos E., Conde E. et al. microRNAs in the kidney: Novel biomarkers of Acute Kidney Injury. Nefrologia 2013; 33(6): 826-834.

44. Alge J.L., Karakala N., Neely B.A. et al. Urinary angiotensinogen and risk of severe AKI. Clin J Am Soc Nephrol 2013; 8(2): 184-193.

45. Hu M.C., Kuro-o M., Moe O.W. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant 2012; 27(7): 2650-7.

46. du Cheyron D., Daubin C., Poggioli J. et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis. 2003; 42(3): 497-506.

47. Zhou H., Yuen P.S., Pisitkun T. et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 2006; 69(8): 1471-1476.

48. Zhou H., Pisitkun T., Aponte A. et al. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 2006; 70(10): 1847-1857.

49. Reeves W.B., Kwon O., Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol 2008; 294(4): 731-8.

50. Han W.K., Wagener G., Zhu Y. et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol 2009; 4(5): 873.

51. Nickolas T.L., Schmidt-Ott K.M., Canetta P. et al. Diagnostic and prognostic stratification in the emergency Department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 2012; 59 (3): 246-255.

52. Endre Z.H., Pickering J.W., Walker R.J. et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 2011; 79(10): 1119-1130.

53. Kokkoris S., Parisi M., Ioannidou S. et al. Combination of renal biomarkers predicts acute kidney injury in critically ill adults. Ren Fail 2012; 34(9): 1100-1108.

54. Katagiri D., Doi K., Honda K. et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann Thorac Surg 2012; 93(2): 577-583.

55. Murugan R., Kellum J.A. Acute kidney injury: what’s the prognosis? Nat Rev Nephrol 2011; 7 (4): 209-217.

56. Pickering J.W., Endre Z.H. Secondary prevention of acute kidney injury. Curr Opin Crit Care 2009; 15 (6): 488-497.

57. Bagshaw S.M., Zappitelli M., Chawla L.S. Novel biomarkers of AKI: the challenges of progress ‘Amid the noise and the haste’. Nephrol Dial Transplant 2013; 28(2): 235-238.


Для цитирования:


Пролетов Я.Ю., Саганова Е.С., Смирнов А.В., Зверьков Р.В. БИОМАРКЕРЫ В ДИАГНОСТИКЕ ОСТРОГО ПОВРЕЖДЕНИЯ ПОЧЕК. СООБЩЕНИЕ II. Нефрология. 2014;18(6):51-58.

For citation:


Proletov I.I., Saganova E.S., Smirnov A.V., Zver'kov R.V. BIOMARKERS IN THE DIAGNOSIS OF ACUTE KIDNEY INJURY. COMMUNICATION II. Nephrology (Saint-Petersburg). 2014;18(6):51-58. (In Russ.)

Просмотров: 119


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)