Preview

Nephrology (Saint-Petersburg)

Advanced search

URINARY microRNA-21 EXPRESSION IN NEPHROPATHIES

Abstract

AIM OF RESEARH. Determine the level of expression of miR-21 in the urine of patients with nephropathy and to compare it with other signs of kidney damage, including morphological. PATIENTS AND METHODS. Seventeen patients with different nephropathy confirmed by kidney biopsy were examined. Glomerular filtration rate was assessed by creatinine clearance, CKD-EPI formula. Daily urinary protein has been established. The degree of glomerulosclerosis was evaluated quantitatively; tubular atrophy, tubulointerstitial fibrosis were evaluated semi-quantitatively on a scale from one to three (0 - no changes; 1 - minor changes, 1-25%; 2 - moderate changes, 25-50%; 3 - severe changes, >50%). miR-21 expression in the urine was determined by a RT-PCR assay and calculated using the 2-deilaCt protocol. miR-21 expression in the urine of healthy donors (n=10) was taken as control. RESULTS. The level of miR-21 expression in the urine in patients with nephropathy were significantly higher than in control (0,3070 [the lower and the upper quartiles: 0,1540; 0,4060] vs 0,001 [0,0002; 0,0254] respectively; P=0,00024). There was strong positive correlation between urinary miR-21 and daily urinary protein (Rs=0,570; P<0,05). There were no correlations between urinary miR-21 and morphological changes (glomerular, tubulointerstitial sclerosis, tubular atrophy). However, the level of expression of miRNA-21 in the urine of patients with moderate atrophy of tubules (0,354 [0,308; 0,933]; n=7) was significantly higher than with minor one (0,211 [0,033; 0,038]; n=10; P=0,04). CONCLUSION. These data suggest that the level of miR-21 expression in the urine to a certain degree can be associated with the severity of renal damage in patients with nephropathies, including the severity of morphological changes, but further research is needed in this area.

About the Authors

A. V. Smirnov
Pavlov First Saint Petersburg State Medical University
Russian Federation


A. V. Karunnaya
Pavlov First Saint Petersburg State Medical University
Russian Federation


M. I. Zarayski
Pavlov First Saint Petersburg State Medical University
Russian Federation


V. G. Sipovski
Pavlov First Saint Petersburg State Medical University
Russian Federation


I. G. Kayukov
Pavlov First Saint Petersburg State Medical University
Russian Federation


M. . Hasun
Pavlov First Saint Petersburg State Medical University
Russian Federation


M. M. Parastaeva
Pavlov First Saint Petersburg State Medical University
Russian Federation


R. V. Zver'kov
Pavlov First Saint Petersburg State Medical University
Russian Federation


References

1. Kataoka M., Wang D.Z. Non-Coding RNAs Including miRNAs and lncRNAs in Cardiovascular Biology and Disease. Cells 2014 Aug 22; 3(3): 883-898.

2. Condorelli G., Latronico M.V., Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 2014 Jun 3; 63(21): 2177-2187.

3. Gharipour M., Sadeghi M. Pivotal role of microRNA-33 in metabolic syndrome: A systematic review. ARYA Atheroscler 2013 Nov; 9(6): 372-376.

4. Rebane A., Akdis C.A. MicroRNAs in allergy and asthma. Curr Allergy Asthma Rep 2014 Apr; 14(4): 424.

5. Hartl M., Grunwald Kadow IC. New roles for „old“ microRNAs in nervous system function and disease. Front Mol Neurosci 2013 Dec 24; 6: 51.

6. Finch M.L., Marquardt J.U., Yeoh G.C., Callus B.A. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014 Sep; 54C: 288-303.

7. Tanase C.P., Neagu A.I., Necula L.G. et al. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol 2014 Aug 21; 20(31): 10790-10801.

8. Смирнов А.В., Кучер А.Г., Добронравов В.А. и др. Диетарный соевый протеин замедляет развитие интерстициального почечного фиброза у крыс с односторонней обструкцией мочеточника: введение в нутритивную эпигеномику. Нефрология 2012; 16(4): 75-83

9. Смирнов А.В., Кучер А.Г., Добронравов В.А. и др. Диетарный соевый протеин замедляет развитие интерстициального почечного фиброза у крыс с односторонней обструкцией мочеточника: введение в нутритивную эпигеномику. Нефрология 2012; 16(4): 75-83].

10. Adams B.D., Kasinski A.L., Slack F.J. Aberrant Regulation and Function of MicroRNAs in Cancer. Curr Biol 2014 Aug 18; 24(16): R762-R776.

11. Qingqing W., Qing-Sheng M., Zheng D. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2013 July; 65(7): 602-614.

12. Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39: D152-157.

13. Landgraf P., Rusu M., Sheridan R et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-1414.

14. Sun X., Koo S., White N. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004; 32(22): e188.

15. Chandrasekaran K., Karolina D.S., Sepramaniam S. et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int 2012; 81(7): 617-627.

16. Lan H.Y. Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation. Int J Biol Sci 2011; 7(7): 1056-1067.

17. Kumarswamy R., Volkmann I., Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011 Sep-Oct; 8(5): 706-713.

18. Duffield J.S., Grafals M., Portilla D. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models. Drug DiscovToday Dis Models 2013 Fall; 10(3): e127-e135.

19. Patel V., Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens Jul 2012; 21(4): 410-416.

20. Zarjou A., Yang S., Abraham E., Agarwal A. et al. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol Oct 2011; 301(4): F793-F801.

21. D’Alessandra X., Devanna P., Limana F. et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010 November; 31(22): 2765-2773.

22. Shi B., Guo Y., Wang J., Gao W. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord 2010; 10: 11.

23. Godwin J.G., Ge X., Stephan K. et al. Identification of a microRNA signature of renal ischemia-reperfusion injury. Proc Natl Acad Sci USA 2010; 107: 14339-14344.

24. Thum T., Gross C., Fiedler J. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984.

25. Liu G., Friggeri A.,Yang Y. et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207: 1589-1597.

26. Zhong X., Chung A.C., Chen H.Y. et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 2011; 22: 1668-1681.

27. Bottinger E.P. TGF-beta in renal injury and disease. Semin Nephrol 2007; 27: 309-320.

28. Wang W., Koka V., Lan H.Y. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 2005; 10(1): 48-56.

29. Davis B.N., Hilyard A.C., Lagna G., Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56-61.


Review

For citations:


Smirnov A.V., Karunnaya A.V., Zarayski M.I., Sipovski V.G., Kayukov I.G., Hasun M., Parastaeva M.M., Zver'kov R.V. URINARY microRNA-21 EXPRESSION IN NEPHROPATHIES. Nephrology (Saint-Petersburg). 2014;18(6):59-63. (In Russ.)

Views: 450


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)