CОВРЕМЕННЫЙ ВЗГЛЯД НА ПАТОФИЗИОЛОГИЮ ВТОРИЧНОГО ГИПЕРПАРАТИРЕОЗА: РОЛЬ ФАКТОРА РОСТА ФИБРОБЛАСТОВ 23 И KLOTHO
https://doi.org/10.24884/1561-6274-2011-15-4-11-20
Аннотация
Ключевые слова
Об авторе
В. А. ДОБРОНРАВОВРоссия
Научноисследовательский институт нефрологии
Список литературы
1. Bricker N.S. On the pathogenesis of the uremic state. An exposition of the 'trade-off hypothesis'. N Engl J. Med 1972; 286 (20): 1093-1099
2. Portale A.A., Halloran B.P., Murphy M.M. et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J. Clin Invest 1986; 77 (1): 7-12
3. Slatopolsky E., Finch J., Denda M. et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J. Clin Invest 1996; 97 (11): 2534-2540
4. Slatopolsky E. The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int 2011; 79 (Suppl 121): S3-S8
5. Potts J.T. Parathyroid hormone: past and present. J. Endocrinol 2005; 187 (3): 311-325
6. Kumar R., Thompson J.R. The regulation of parathyroid hormone secretion and synthesis. J. Am Soc Nephrol 2011; 22(2): 216-224
7. Denda M., Finch J., Slatopolsky E. Phosphorus accelerates the development of parathyroid hyperplasia and secondary hyperparathyroidism in rats with renal failure. Am J. Kidney Dis 1996; 28 (4): 596-602
8. Martin D.R., Ritter C.S., Slatopolsky E. et al. Acute regulation of parathyroid hormone by dietary phosphate. Am J. Physiol Endocrinol Metab 2005; 289 (4): E729-E734
9. Kestenbaum B., Sampson J.N., Rudser K.D. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. Journal of the American Society of Nephrology. 2005; 16(2): 520-528
10. Hsu C.Y., Chertow G.M. Elevations of serum phosphorus and potassium in mild to moderate chronic renal insufficiency. Nephrology Dialysis Transplantation. 2002; 17(8): 1419-1425
11. Levin A., Bakris G.L., Molitch M. et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney International 2007; 71 (1): 31-38
12. Murayama A., Takeyama K., Kitanaka S. et al. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1 alpha,25(OH)2D3 in intact animals. Endocrinology 1999; 140(5): 2224-2231
13. Shimada T., Mizutani S., Muto T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98 (11): 6500-6505
14. Kurosu H., Ogawa Y., Miyoshi M. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol Chem 2006 10; 281(10): 6120-6123
15. Kuro-o M., Matsumura Y., Aizawa H. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655): 45-51
16. Liu S., Vierthaler L., Tang W. et al. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J. Am Soc Nephrol 2008; 19 (12): 2342-2350
17. Hu M.C., Shi M., Zhang J. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24 (9): 3438-3450
18. Saito H., Kusano K., Kinosaki M. et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1 alpha,25-dihydroxyvitamin D3 production. J. Biol Chem 2003; 278 (4): 2206-2211
19. Shimada T., Hasegawa H., Yamazaki Y. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner Res 2004; 19(3): 429-435
20. Antoniucci D.M., Yamashita T., Portale A.A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin Endocrinol Metab 2006; 91 (8): 3144-3149
21. Burnett S.M., Gunawardene S.C., Bringhurst F.R. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner Res 2006; 21 (8): 1187-1196
22. Lopez I., Rodriguez-Ortiz M.E., Almaden Y. et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 2011; 80 (5): 475-482
23. Tsujikawa H., Kurotaki X., Fujimori T. et al. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003; 17 (12): 2393-2403
24. Isakova T., Wahl P., Vargas G.S. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011; 79 (12): 1370-1378
25. Gutierrez O., Isakova T., Rhee E. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. Journal of the American Society of Nephrology 2005; 16 (7): 2205-2215
26. Liu S., Quarles L.D. How fibroblast growth factor 23 works. Journal of the American Society of Nephrology 2007; 18 (6): 1637-1647
27. Pria D., Torres P.U., Friedlander G. Latest findings in phosphate homeostasis. Kidney International 2009; 75 (9): 882889
28. Wolf M. Forging forward with 10 burning questions on FGF23 in kidney disease. Journal of the American Society of Nephrology 2010; 21 (9): 1427-1435
29. Berndt T., Kumar R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology 2009; 24 (1): 17-25
30. Berndt T., Thomas L.F., Craig T.A. et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA 2007; 104 (26): 11085-11090
31. Martin D.R., Ritter C.S., Slatopolsky E. et al. Acute regulation of parathyroid hormone by dietary phosphate. Am J. Physiol Endocrinol Metab 2005; 289 (4): E729-E734.
32. Ito N., Fukumoto S., Takeuchi Y. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner Metab 2007; 25 (6): 419-422
33. Isakova T., Gutierrez O., Shah A. et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J. Am Soc Nephrol 2008; 19 (3): 615-623
34. Cha S.K., Ortega B., Kurosu H. et al. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 2008; 105 (28): 9805-9810
35. Drueke T.B. Klotho, FGF23, and FGF receptors in chronic kidney disease: a yin-yang situation? Kidney Int. 2010; 78 (11): 1057-1060
36. Imura A., Tsuji Y., Murata M. et al. a-Klotho as a regulator of calcium homeostasis. Science 2007; 316 (5831): 1615-1618
37. Hu M.C., Shi M., Zhang J. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24 (9): 3438-3450
38. Hu M.C., Shi M., Zhang J. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am Soc Nephrol 2011; 22 (1): 124-136
39. Koh N., Fujimori T., Nishiguchi S. et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 2001; 280 (4): 1015-1020
40. O'Brien S.P., Boulanger J.H., Liu S. et al. Decline in Klotho expression precedes FGF23 and PTH induction in the Jck mouse, a progressive genetic model of CKD-MBD [Abstract F-FC224]. J. Am Soc Nephrol 2009; 20: 54A
41. Kuro-o М. Phosphate and Klotho. Kidney International 2011; 79 (Suppl 121), S20-S23
42. Sitara D., Razzaque M.S., St-Arnaud R. et al. Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf-23-null animals. Am J. Pathol 2006; 169 (6): 2161-2170
43. Ohnishi M., Nakatani T., Lanske B. et al. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int 2009; 75 (11): 1166-1172
44. Morishita K., Shirai A., Kubota M. et al. The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc. J. Nutr 2001; 131 (12): 3182-3188
45. Stubbs J.R., Liu S., Tang W. et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J. Am Soc Nephrol 2007; 18 (7): 2116-2124
46. Ohnishi M., Nakatani T., Lanske B. et al. In vivo genetic evidence for suppressing vascular and soft-tissue calcification through the reduction of serum phosphate levels, even in the presence of high serum calcium and 1,25-dihydroxyvitamin d levels. Circ Cardiovasc Genet 2009; 2 (6): 583-590
47. Galitzer H., Ben-Dov I.Z., Silver J. et al. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 2010; 77 (3): 211-218
48. Komaba H., Goto S., Fujii H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 2010; 77 (3): 232-238
49. Krajisnik T., Olauson H., Mirza M.A. et al. Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int 2010; 78 (10): 1024-1032
50. Krajisnik T., Bjorklund P., Marsell R. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol 2007; 195: 125-131
51. Ichikawa S., Imel E.A., Kreiter M.L. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin Invest 2007; 117 (9): 2684-2691
52. Hofman-Bang J., Martuseviciene G., Santini M.A. et al. Increased parathyroid expression of klotho in uremic rats. Kidney Int 2010; 78 (11): 1119-1127
53. Wetmore J.B., Liu S., Krebill R. et al. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. CJASN 2010; 5 (1): 110-116
54. Dusso A.S., Pavlopoulos T., Naumovich L. et al. p21WAF1 and transforming growth factor-б mediate dietary phosphate regulation of parathyroid cell growth. Kidney Int 2001; 59 (3): 855-865
55. Wells A. EGF receptor. Int J. Biochem Cell Biol 1999; 31: 637-643
56. Cozzolino M., Lu Y., Sato T. et al. A critical role for enhanced TGF-a and EGFR expression in the initiation of parathyroid hyperplasia in experimental kidney disease. Am J. Physiol Renal Physiol 2005; 289 (5): F1096-F1102
57. Raught B., Gingras A.C., James A. et al. Expression of a translationally regulated, dominant-negative CCAAT/enhancer-binding protein beta isoform and up-regulation of the eukaryotic translation initiation factor 2alpha are correlated with neoplastic transformation of mammary epithelial cells. Cancer Res 1996; 56 (19): 4382-4386
58. Arcidiacono M.V., Sato T., Alvarez-Hernandez D. et al. EGFR activation increases parathyroid hyperplasia and calcitriol resistance in kidney disease. J. Am Soc Nephrol 2008; 19 (2): 310-320
59. Dusso A., Arcidiacono M.V., Yang J. et al. Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. J. Steroid Biochem Mol Biol 2010; 121 (1-2): 193-198
60. Chen C.D., Podvin S., Gillespie E. et al. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 2007; 104 (50): 19796-19801
61. Bloch L., Sineshchekova O., Reichenbach D. et al. Klotho is a substrate for a-, в-and г-secretase. FEBS Lett 2009; 583 (19): 3221-3224
62. Chen C.D., Podvin S., Gillespie E. et al. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 2007; 104 (50): 19796-19801
63. Cordero J.B., Cozzolino M., Lu Y. et al. 1,25-Dihydroxyvitamin D down-regulates cell membrane growth-and nuclear growth-promoting signals by the epidermal growth factor receptor. J. Biol Chem 2002; 277 (41): 38965-38971
64. Dusso A. Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int 2011; Suppl. 1: 136-141
65. Tatsumi S., Segawa H., Morita K. et al. Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology 1998; 139 (4): 1692-1699
66. Jiang Y., Wang M. Overexpression of parathyroid pituitary-specific transcription factor (Pit) -1 in hyperphosphatemia-induced hyperparathyroidism of chronic renal failure rats. Chin Med J. (Engl) 2010; 123 (12): 1566-1570
67. Fliser D., Kollerits B., Never U. et al. Fibroblast growth factor 23 (FGF-23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am Soc Nephrol 2007; 18 (9): 2600-2608
68. Titan S.M., Zatz R., Graciolli F.G. et al. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin J. Am Soc Nephrol 2010; 6 (2): 241-247
69. Vervloet M., van Zuilen A.D., Blankenstijn P.J. et al. Fibroblast growth factor 23 is associated with proteinuria. J. Am Soc Nephrol 2010; 21: 186A
70. Gutierrez O.M., Mannstadt M., Isakova T. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J. Med 2008; 359 (6): 584-592
71. Vervloet M., Larsson T. Fibroblast growth factor-23 and Klotho in chronic kidney disease. Kidney Int 2011; Suppl. 1: 130-135
72. Mirza M.A., Larsson A., Lind L. et al. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009; 205 (2): 385-390
73. Mirza M.A., Hansen T., Johansson L. et al. Relationship between circulating FGF-23 and total body atherosclerosis in the community. Nephrol Dial Transplant 2009; 24 (10): 31253131
74. Yilmaz M.I., Sonmez A., Saglam M. et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int 2010; 78 (7): 679-685
75. Kirkpantur A., Balci M., Gurbuz C.A. et al. Serum fibroblast growth factor-23 (FGF-23) levels are independently associated with left ventricular mass and myocardial performance index in maintenance haemodialysis patients. Nephrol Dial Transplant 2011; 26 (4): 1346-1354
76. Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem 2008; 389 (3): 233-241
77. Kusaba T., Okigawa M., Matui A. et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA 2010; 107 (45): 19308-19313
78. Nagai R., Saito Y., Ohyama Y. et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci 2000; 57 (5): 738-746
79. Doi S., Zou Y., Togao O. et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol Chem 2011; 286 (10): 8655-8665
80. Takeshita K., Fujimori T., Kurotaki Y. et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 2004; 109 (14): 17761782
81. Maschio G., Tessitore N., D'Angelo A. et al. Early dietary phosphorus restriction and calcium supplementation in the prevention of renal osteodystrophy. Am J. Clin Nutr 1980; 33 (7): 1546-1554
82. Alfrey A.C. Effect of dietary phosphate restriction on renal function and deterioration. Am J. Clin Nutr 1988; 47 (1): 153-156
Рецензия
Для цитирования:
ДОБРОНРАВОВ В.А. CОВРЕМЕННЫЙ ВЗГЛЯД НА ПАТОФИЗИОЛОГИЮ ВТОРИЧНОГО ГИПЕРПАРАТИРЕОЗА: РОЛЬ ФАКТОРА РОСТА ФИБРОБЛАСТОВ 23 И KLOTHO. Нефрология. 2011;15(4):11-20. https://doi.org/10.24884/1561-6274-2011-15-4-11-20
For citation:
DOBRONRAVOV V.A. CURRENT VIEW ON THE PATHOPHYSIOLOGY OF SECONDARY HYPERPARATHYROIDISM: ROLE OF FIBROBLAST GROWTH FACTOR 23 AND KLOTHO. Nephrology (Saint-Petersburg). 2011;15(4):11-20. (In Russ.) https://doi.org/10.24884/1561-6274-2011-15-4-11-20