Preview

Нефрология

Расширенный поиск

ЗАБОЛЕВАНИЯ И СИНДРОМЫ, ОБУСЛОВЛЕННЫЕ ГЕНЕТИЧЕСКИМИ НАРУШЕНИЯМИ ПОЧЕЧНОГО ТРАНСПОРТА ЭЛЕКТРОЛИТОВ

https://doi.org/10.24884/1561-6274-2004-8-4-11-24

Аннотация

Заболевания и синдромы, обусловленные генетическими нарушениями почечного транспорта электролитов.

Об авторах

Я. Ф. Зверев
Алтайский медицинский университет
Россия

Кафедра фармакологии



В. М. Брюханов
Алтайский медицинский университет
Россия

Кафедра фармакологии



В. В. Лампатов
Алтайский медицинский университет
Россия

Кафедра фармакологии



Список литературы

1. Cole DE, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol 2000; 11 (10): 1937 1947

2. Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35 (3): 117126

3. Konrad M, Weber S. Recent advances in molecular genetics of hereditary magnesiumlosing disorders. J Am Soc Nephrol 2003; 14 (1): 249260

4. Bartter FC, Pronove P, Gill JR, MacCardle RC. Hyperplasia of juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 1962; 33: 811828

5. Amirlak I, Dawson KP. Bartter syndrome: an overview. Q J Med 2000; 93 (4): 207215

6. Bettinelli A, Vezzoli G, Colussi G et al. Genotype phenotype correlations in normotensive patients with primary renal tubular hypokalemic metabolic alkalosis. J Nephrol 1998; 11 (2): 6169

7. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 1966; 79: 221235

8. Ferrari P, Frey FJ. Pharmacologic action of diuretics in the kidney. Ther Umsch 2000; 57 (6): 345350

9. Gill JRJr, Bartter FC. Evidence for a prostaglandin independent defect in chloride reabsorption in the loop of Henle as a proximal cause of Bartter’s syndrome. Am J Med 1978; 65: 766772

10. Hene RJ, Koomans HA, Dorhout Mees EJ. Suppressed diluting segment reabsorption in Bartter syndrome: studies in a patient and synthesis of literature data. Am J Nephrol 1988; 8: 402409

11. Koomans HA, Hene RJ, Dorhout Mees EJ, Boer WH. Variant of Bartter’s syndrome with a distal tubular rather than loop of Henle defect. Nephron 1989; 53: 164165

12. Kockerling A, Reinalter SC, Seyberth HW. Impaired response to furosemide in hyperprostaglandin E syndrome: evidence for a tubular defect in the loop of Henle. J Pediatr 1996; 129: 519527

13. Puschett JB, Greenberg A, Mitro R et al. Variant of Bartter’s syndrome with a distal tubular rather than loop of Henle defect. Nephron 1988; 50: 205211

14. Sutton RAL, Mavichak V, Halabe A, Wilkins GE. Bartter’s syndrome: evidence suggesting a distal tubular defect in a hypocalciuric variant of the syndrome. Miner Electrolyte Metab 1992; 18: 4351

15. Colussi G, Rombola G, Brunati C, De Ferrari ME. Abnormal reabsorption of Na+/Cl by the thiazideinhibitable transporter of the distal convoluted tubule in Gitelman’s syndrome. Am J Nephrol 1997; 17 (2): 103111

16. Yeum CH, Kim SW, Ma SK et al. Attenuated renal excretion in response to thiazide diuretics in Gitelman’s syndrome: a case report. J Korean Med Sci 2002; 17 (4): 567 570

17. Kurschat C, Heering P, Grabensee B. Gitelman’s syndrome:differential diagnosis of hypokalemia. Dtsch Med Wschr 2003; 128 (22): 12251228

18. Tsuchiya H, Kamoi K, Soda S et al. Gitelman’s syndrome first diagnosed as Bartter’s syndrome. Intern Med 2001; 40 (10): 10111014

19. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001; 81: 239 297

20. Zelikovic I. Hypokalaemic saltlosing tubulopathies: an evolving story. Nephrol Dial Transplant 2003; 18 (9): 1696 1700

21. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens 2003; 12 (5): 527532

22. Vantyghem MC, Douillard C, Binaut R, Provot F. Bartter’s syndromes. Ann Endocrinol (Paris) 1999; 60 (6): 465472

23. Kcrolyi L, Koch M.C, Grzeschik KH, Seyberth HW. The molecular genetic approach to «Bartter’s syndrome». J Mol Med 1998; 76 (5): 317325

24. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci 2001; 322 (6): 316332

25. Simon DB, Karet FE, Hamden JM et al. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the NaK2Cl cotransporter NKCC2. Nat Genet 1996 ; 13: 183188

26. Starremans PG, Kersten FF, Knoers NV et al. Mutations in the human NaK2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol 2003; 14 (6): 14191426

27. Schulte U, Hahn H, Konrad M et al. pH gating of ROMK (Kir 1.1) channels: control by an ArgLysArg triad disrupted in antenatal Bartter syndrome. PNAS 1999; 96 (26): 1529815303

28. Flagg TP, Yoo D, Sciortino CM et al. Molecular mechanism of a COOHterminal gating determinant in the ROMK channel revealed by a Bartter’s disease mutation. J Physiol 2002; 544 (2): 351362

29. International collaborative study group for Bartterlike syndromes. Mutations in the gene encoding the inwardly rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. Hum Mol Genet 1997; 6 (1): 1727

30. Shieh CC, Coglan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000; 52 (4): 557594

31. Cho JT, GuayWoodford LM. Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course. J Korean Med Sci 2003; 18: 6568

32. Derst C, Wischmeyer E, PreisigMuller R et al. A hyperprostaglandin E syndrome mutation in Kir 1.1 (renal outer medullary potassium) channels reveals a crucial residue for channel function in Kir 1.3 channels. J Biol Chem 1998; 273 (37): 2388423891

33. Flagg TP, Tate M, Merot J, Welling PA. A mutation linked with Bartter’s syndrome locks Kir 1.1a (ROMK1) channels in a closed state. J Gen Physiol 1999; 114 (5): 685700

34. Starremans PG, van der Kemp AW, Knoers NV et al. Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Pflugers Arch 2002; 443 (3): 466472

35. Peters M, Ermert S, Jeck N et al. Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 2003; 64 (3): 923932

36. Lorenz JN, Baird NR, Judd LM et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 2002; 277 (40): 3787137880

37. GuayWoodford LM. Bartter syndrome: unraveling the pathophysiologic enigma. Am J Med 1998; 105: 151161

38. Scheinman SJ, GuayWoodford LM, Thakker RV, Warnock DG. Genetic disorders of renal electrolyte transport. N Engl J Med 1999; 340 (15): 11771187

39. VargasPoussou R, Huang C, Hulin P et al. Functional characterization of a calciumsensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartterlike syndrome. J Am Soc Nephrol 2002; 13: 22592266

40. Watanabe S, Fukumoto S, Chang H et al. Association between activating mutations of calciumsensing receptor and Bartter’s syndrome. Lancet 2002; 360 (9334): 692694

41. Calo L, Ceolotto G, Milani M et al. Abnormalities of Gq mediated cell signaling in Bartter and Gitelman syndromes. Kidney Int 2001; 60 (3): 882889

42. Galesic K, Bozic B, ScukanecSpoljar M et al. Hypokalemic metabolic alkalosis three case reports. Acta Med Croatica 2001; 55 (45): 219223

43. Ellison DH. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol 2000; 279 (4): F616F625

44. Jentsch TJ, Steinmeyer K, Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 1990; 348: 510514

45. Uchida S. In vivo role of CLC chloride channels in the kidney. Am J Physiol Renal Physiol 2000; 279 (5): F802F808

46. Waldegger S, Jentsch TJ. Functional and structural analysis of ClCK chloride channels involved in renal disease. J Mol Chem 2000; 275 (32): 2452724533

47. Vandewalle A. Diversity within the ClC chloride channel family involved in inherited diseases: from plasma membranes to acidic organelles. Nephrol Dial Transplant 2002; 17 (1): 13

48. Akizuki N, Uchida S, Sasaki S, Marumo F. Impaired solute accumulation in inner medulla of Clcnk 1 / mice kidney. Am J Physiol Renal Physiol 2001; 280 (1): F79F87

49. Jentsch J, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82 (2): 503568

50. Hayama A, Rai T, Sasaki S, Uchida S. Molecular mechanisms of Bartter syndrome caused by mutation in the BSND gene. Histochem Cell Biol 2003; 119 (6): 485493

51. Estevez R, Boettger T, Stein V et al. Barttin is a Cl channel betasubunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 2001; 414: 558561

52. Simon DB, Bindra RS, Mansfield TA et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 1997; 17: 171178

53. Konrad M, Vollmer M, Lemmink HH et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 2000; 11 (8): 14491459

54. Schurman SJ, Perlman SA, Sutphen R et al. Genotype/ phenotype observations in african americans with Bartter syndrome. J Pediatr 2001; 139 (1): 105110

55. Jeck N, Konrad M, Peters M et al. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter Gitelman phenotype. Pediatric Research 2000; 48 (6): 754758

56. Vollmer M, Jeck N, Lemmink HH et al. Antenatal Bartter syndrome with sensorineural deafness: refinement of the locus on chromosome 1p 31. Nephrol Dial Transplant 2000; 15 (7): 970974

57. Birkenhager R, Otto E, Schurmann MJ et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 2001; 29: 310314

58. Shalev H, Ohali M, Kachko L, Landau D. The neonatal variant of Bartter syndrome and deafness: preservation of renal function. Pediatrics 2003; 112 (3): 628633

59. Miyamura N, Matsumoto K, Taguchi T et al. Atypical Bartter syndrome with sensorineural deafness with G47R mutation of the betasubunit for ClCKa ana ClCKb chloride c(1): 6570hannels, barttin. J Clin Endocrinol Metab 2003; 88 (2): 781786

60. Simon DB, NelsonWilliams C, Bia MJ et al. Gitelman’s variant of Bartter’s syndrome; inherited hypokalaemia is caused by mutations in the thiazidesensitive NaCl cotransporter. Nat Genet 1996 б; 12: 2430

61. Nishio T, Poch E, Monroy A. Effects of two glycosylation sequons on function of the thiazidesensitive NaCl cotransporter (rTSC) (abstract). J Am Soc Nephrol 1998; 9: 42

62. Lemmink HH, Knoers NV, Karolyi L et al. Novel mutations in the thiazidesensitive NaCl cotransporter gene in patients with Gitelman syndrome with predominant localization to the Cterminal domain. Kidney Int 1998; 54 (3): 720730

63. Monkawa T, Kurihara I, Kobayashi K et al. Novel mutations in thiazidesensitive NaCl cotransporter gene of patients with Gitelman’s syndrome. J Am Soc Nephrol 2000; 11 (1): 6570

64. Schepkens H, Lameire N. Gitelman’s syndrome: an overlooked cause of chronic hypokalemia and hypomagnesemia in adults. Acta Clin Belg 2001; 56 (4): 248254

65. Reissinger A, Ludwig M, Utsch B et al. Novel NCCT gene mutations as a cause of Gitelman’s syndrome and a systematic review of mutant and polymorphic NCCT alleles. Kidney Blood Press Res 2002; 25 (6): 354362

66. Syren ML, Tedeschi S, Cesareo L et al. Identification of fifteen novel mutations in the SLC12A3 gene encoding the Na Cl Cotransporter in Italian patients with Gitelman syndrome. Hum Mutat 2002; 20 (1): 78

67. Cheng NL, Kao MC, Hsu YD, Lin SH. Novel thiazide sensitive NaCl cotransporter mutation in a Chinese patient with Gitelman’s syndrome presenting as hypokalaemic paralysis. Nephrol Dial Transplant 2003; 18 (5): 10051008

68. Coto E, Rodriguez J, Jeck N et al. A new mutation (intron 9 + 1 G > T) in the SLC12A3 gene is linked to Gitelman syndrome in Gypsies. Kidney Int 2004; 65 (1): 2529

69. Abuladze N, Yanagawa N, Lee I et al. Peripheral blood mononuclear cells express mutated NCCT mRNA in Gitelman’s syndrome: evidence for abnormal thiazidesensitive NaCl cotransport. J Am Soc Nephrol 1998; 9 (5): 819826

70. Tajima T, Kobayashi Y, Abe S et al. Two novel mutations of thiazidesensitive NaCl cotransporter (TSC) gene in two sporadic Japanese patients with Gitelman syndrome. Endocr J 2002; 49 (1): 9196

71. Kunchaparty S, Palsco M, Berkman J et al. Defective processing and expression of thiazidesensitive NaCl cotransporter as a cause of Gitelman’s syndrome. Am J Physiol 1999; 277 (4): F643F649

72. Hammond C, Helenius A. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol 1994; 126: 4152

73. Bross P, Corydon TJ, Andresen BS et al. Protein misfolding and degradation in genetic diseases. Hum Mutat 1999; 14: 186198

74. Kuznetsov G, Nigam SK. Folding of secretory and membrane proteins. N Engl J Med 1998; 339: 16881695

75. De Jong JC, Van Der Vliet WA, Van Den Heuvel LP et al. Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman’s syndrome. J Am Soc Nephrol 2002; 13 (6): 1442 1448

76. De Jong JC, Willems PH, Mooren FJ et al. The structural unit of the thiazidesensitive NaCl cotransporter (NCC) is a homodimer. J Biol Chem 2003; 278 (27): 2430224307

77. Wyse B, Ali N, Ellison DH. Interaction with grp 58 increases activity of the thiazidesensitive NaCl cotransporter. Am J Physiol Renal Physiol 2002; 282 (3): F424F430

78. Friedman PA. Codependence of renal calcium and sodium transport. Annu Rev Physiol 1998; 60: 179197

79. Monnens L, Bindels R, Grunfeld JP. Gitelman syndrome comes of age. Nephrol Dial Transplant 1998; 13: 16171619

80. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 2000; 80 (1): 277313

81. PecoAntic A, Dudic S, Marsenic O, Zivic G. Bartter’s syndrome: new classification, old therapy. Srp Arh Celok Lek 2001; 129 (56): 139142

82. Proesmans WC. Bartter syndrome and its neonatal variant. Eur J Pediatr 1997; 156: 669679

83. Wong W, Hulton SA, Taylor CM et al. A case of neonatal Bartter’s syndrome. Pediatr Nephrol 1996; 10: 414418

84. Mackie FE, Hodson EM, Roy LP, Knight JF. Neonatal Bartter syndrome use of indomethacin in the newborn period and prevention of growth failure. Pediatr Nephrol 1996; 10: 756 758

85. Haas NA, Nossal R, Schneider CH et al. Successful management of an extreme example of neonatal hyperprostaglandinE syndrome (Bartter’s syndrome) with the new cyclooxygenase2 inhibitor rofecoxib. Pediatr Crit Care Med 2003; 4 (2): 249251

86. Zhang MZ, Harris RC, McKanna JA. Regulation of cyclooxygenase2 (COX2) in rat renal cortex by adrenal glucocorticoids and mineralocorticoids. Proc Natl Acad Sci U S A 1999; 96 (26): 1528015285

87. Campean V, Theilig F, Paliege A et al. Key enzymes for renal prostaglandin synthesis: site specific expression in rodent (rat, mouse). Am J Physiol Renal Physiol 2003; 285 (1): F19F32

88. RodriguezSoriano J. Bartter and related syndromes; the puzzle is almost solved. Pediatr Nephrol 1998; 12: 1527

89. Hene RJ, Kooma Dorhout Mees EJ et al. Correction of hypokalemia in Bartter’s syndrome by enalapril. Am J Kidney 1987; 9: 200205

90. Barakat AJ, Rennert OM. Gitelman’s syndrome (familial hypokalemiahypomagnesemia). J Nephrol 2001; 14 (1): 4347

91. Bettinelli A, Basilico E, Metta MG et al. Magnesium supplementation in Gitelman syndrome. Pediatr Nephrol 1999; 19 (4): 311314

92. Colussi G, Rombola G, De Ferrari ME et al. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol 1994; 14: 127135

93. Hansen KW, Mosekilde L. Gitelman syndrome. An overlooked disease with chronic hypomagnesemia and hypokalemia in adults. Ugeskr Laeger 2003; 165 (11): 1123 1127

94. Liaw LCT, Banerjree K, Coulthard MG. Dose related growth response to indometacin in Gitelman syndrome. Arch Dis Child 1999; 81 (6): 508510

95. Schmidt H, Kabesch M, Schwarz HP, Kiess W. Clinical, biochemical and molecular genetic data in five children with Gitelman’s syndrome. Horm Metab Res 2001; 33 (6): 354357

96. Mayan H, Vered I, Mouallen M et al. Pseudohypoaldosteronism type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 2002; 87 (7): 3248 3254

97. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazidesensitive NaCl cotransport. J Clin Invest 2003; 111 (7): 10391045

98. Yamauchi K, Rai T, Kobayashi K et al. Transient expression of WNK4 in MDCK cells: localization and functional analysis. J Am Soc Nephrol 2002; 13: 483A

99. Bahr V, Oelkers W, Diederich S. Monogenic hypertension. Med Klin 2003; 98 (4) 208217

100. Toka HR. The molecular basis of hypertension. Turk J Pediatr 2002; 44 (3): 183193

101. Ведерникова ЕА, Максимов АВ, Негуляев ЮА. Функциональная характеристика и молекулярная топология по тенциалнезависимых натриевых каналов. Цитология 1999; 8: 65866

102. Брюханов ВМ, Зверев ЯФ. Побочные эффекты современных диуретиков. Метаболические и токсико-аллергические аспекты. Новосибирск: ЦЭРИС; 2003

103. Зверев ЯФ, Брюханов ВМ. Современные представления о механизмах почечного действия альдостерона. Нефрология 2001; 4: 916

104. Gormley K, Dong Y, Sagnella GA. Regulation of the epithelial sodium channel by accessory protrins. Biochem J 2003; 371 (1): 114

105. Kamynina E, Staub O. Concerted action of ENaC, Nedd42, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol 2002; 283 (3): F377F387

106. Debonneville C, Flores SY, Kamynina E et al. Phosphorylation of Nedd42 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 2001; 20 (24): 7052 7059.

107. Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoidregulated kinase modulates Nedd42mediated inhibition of the epithelial Na+ channel. J Biol Chem 2002; 277 (1): 58

108. Flores SY, Debonneville C, Staub O. The role of Nedd4/ Nedd4like dependent ubiquitylation in epithelial transport processes. Pflugers Arch 2003; 446 (6): 334338

109. Staub O, Abriel H, Plant P et al. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 2000; 57 (3): 809815

110. Gajewska B, Shcherbik N, Oficjalska D et al. Functional analysis of the human orthologue of the RSP5encoded ubiquitin ligase, hNedd4, in yeast. Curr Genet 2003; 43 (1): 110

111. Fotia AB, Dinudom A, Shearwin KE et al. The role of individual Nedd42 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J 2003; 17, (1): 7072

112. Warnock DG. Liddle syndrome: genetics and mechanisms of Na+ channel defects. Am J Med Sci 2001; 322 (6): 302307

113. Hummler E. Epithelial sodium channel, salt intake, and hypertension. Curr Hypertens Rep 2003; 5 (1): 1118

114. Liddle GW, Bledsoe T, Coppage WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Am Assoc Physicians 1963; 76: 199213

115. Warnock DG. Hypertension. Semin Nephrol 1999; 19 (4): 374380

116. Corvol P, Soubrier F, Jeunemaitre X. Molecular genetics of the reninangiotensinaldosterone system in human hypertension. Pathol Biol (Paris) 1997; 45 (3): 229239

117. Farman N, Bocchi B. Mineralocorticoid selectivity: molecular and cellular aspects. Kidney Int 2000; 57 (4): 1364 1369

118. Morris DJ, Souness GW, Brem AS, Oblin ME. Interactions of mineralocorticoids and glucocorticoids in epithelial target tissues. Kidney Int 2000; 57 (4): 13701373

119. Torpy DJ, Stratakis CA, Chrousos GP. Hyper and hypoaldosteronism. Vitam Horm 1999; 57: 177216

120. Dluhy RG. Screening for genetic causes of hypertension. Curr Hypertens Rep 2002: 4 (6): 439444

121. Watson B. Genetics of the kidney and hypertension. Curr Hypertens Rep 2003; 5 (3): 273276

122. Rezkalla L, Borra S. Salineresistant metabolic alkalosis, severe hypokalemia and hypertension in a 74old woman. Clin Nephrol 2000; 53 (1): 6670

123. Assadi FK, Kimura RE, Subramanian U, Patel S. Liddle syndrome in a newborn infant. Pediatr Nephrol 2002; 17 (8): 609611

124. Ma X, Tian Y, Gao Y et al. A study of mutation(s) of the epithelial sodium channel gene in a Liddle’s syndrome family. Zhonghua Nei Ke Za Zhi 2001; 40 (6): 390393

125. Nakano Y. Ishida T, Ozono R et al. A frameshift mutation of beta subunit of epithelial sodium channel in a case of isolated Liddle syndrome. J Hypertens 2002; 20 (12): 23792382

126. Xu X, Niu T, Chen C et al. Identification of a novel intron and 4 polymorphisms in the gene encoding the gamma subunit of the epithelial sodium channel. Hum Biol 1999; 71 (5): 781789

127. Inoue J, Iwaoka T, Tokunaga H et al. A family with Liddle’s syndrome caused by a new missense mutation in the beta subunit of the epithelial sodium channel. J Clin Endocrinol Metab 1998; 83 (6): 22102213

128. Oh J, Kwon KH. Liddle’s syndrome: a report in a middleaged woman. Yonsei Med J 2000; 41 (2): 276280

129. Uehara Y, Sasaguri M, Kinoshita A et al. Genetic analysis of the epithelial sodium channel in Liddle’s syndrome. J Hypertens 1998; 16 (8): 11311135

130. Rayner BL, Owen EP, King J.A et al. A new mutation, R563Q, of the beta subunit of the epithelial sodium channel associated with lowrenin, lowaldosterone hypertension. J Hypertens 2003; 21 (5): 921926

131. Persu A, Barbry P, Bassilana F et al. Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension. Hypertension 1998; 32 (1): 129137

132. Jackson SN, Williams B, Houtman P, Trmbath RC. The diagnosis of Liddle syndrome by identification of a mutation in the beta subunit of the epithelial sodium channel. J Med Genet 1998; 35 (6): 510512

133. Barbry P, Champigny G, Lingueglia E et al. The amiloridesensitive sodium channel. Nephrologie 1996; 17 (7): 389393

134. Hiltunen TP, HsnnilaHandelberg T, Petajaniemi N et al. Liddle’s syndrome associated with a point mutation in the extracellular domain of thе epithelial sodium channel gamma subunit. J Hypertens 2002; 20 (12): 23832390

135. Awayda MS, Tousson A, Benos DJ. Regulation of a cloned epithelial Na+ channel by its beta and gammasubunits. Am J Physiol 1997; 273 (6): 18891899

136. Harvey KF, Dinudom A, Komwatana P et al. All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+. J Biol Chem 1999; 274 (18): 1252512530

137. Warnock DG. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int 1998; 53: 18 24

138. Rossier BC. 1996 Homer Smith Award Lecture: cum grano salis: the epithelial sodium channel and the control of blood pressure. J Am Soc Nephrol 1997; 8: 980992

139. Jeunemaitre X, Bassilana F, Persu A et al. Genotype phenotype analysis of a newly discovered family with Liddle’s syndrome. J Hypertens 1997; 15 (10): 10911100

140. Oberfield SE, Levine LS, Carey RM et al. Pseudohypoaldosteronism: multiple target organ unresponsiveness to mineralocorticoid hormones. J Clin Endocrinol Metab 1979; 48: 228234

141. Geller DS, Rodriguez Soriano J, Vallo Boado A et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 1998; 19 (3): 279281

142. Chang SS, Grunder S, Hanukoglu A et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 1996; 12: 248253

143. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splicesite mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 1996; 13: 248250

144. Pradervand S, Barker PM, Wang Q et al. Salt restriction induces pseudohypoaldosteronism type 1 in mice expressing low levels of the betasubunit of the amiloridesensitive epithelial sodium channel. Proc Natl Acad Sci U S A 1999; 96 (4): 1732 1737

145. Saxena A, Hanukoglu I, Saxena D et al. Novel mutations responsible for autosomal recessive multsystem pseudohypoaldosteronism and sequence variants in epithelial sodium channel alpha, beta, and gammasubunit genes. J Clin Endocrinol Metab 2002; 87 (7): 33443350

146. Arai K, Zachman K, Shibasaki T, Chrousos GP. Polymorphisms of amiloridesensitive sodium channel subunits in five sporadic cases of pseudohypoaldosteronism: do they have pathogenic potential? J Clin Endocrinol Metab 1999; 84 (7): 24342437

147. Barbry P, Hofman P. Molecular biology of Na+ absorption. Am J Physiol 1997; 273 (3): G571G585

148. Bonny O, Chraibi A, Loffing J et al. Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na+ channel lacking the poreforming region of its alpha subunit. J Clin Invest 1999; 104 (7): 967974


Рецензия

Для цитирования:


Зверев Я.Ф., Брюханов В.М., Лампатов В.В. ЗАБОЛЕВАНИЯ И СИНДРОМЫ, ОБУСЛОВЛЕННЫЕ ГЕНЕТИЧЕСКИМИ НАРУШЕНИЯМИ ПОЧЕЧНОГО ТРАНСПОРТА ЭЛЕКТРОЛИТОВ. Нефрология. 2004;8(4):11-24. https://doi.org/10.24884/1561-6274-2004-8-4-11-24

For citation:


Zverev Ya.F., Bryukhanov V.M., Lampatov V.V. DISEASES AND SYNDROMES RESULTING FROM GENETIC IMPAIMENTS OF THE RENAL TRANSPORT OF ELECTROLYTES. Nephrology (Saint-Petersburg). 2004;8(4):11-24. (In Russ.) https://doi.org/10.24884/1561-6274-2004-8-4-11-24

Просмотров: 380


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)