Preview

Нефрология

Расширенный поиск

МЕХАНИЗМ ФОРМИРОВАНИЯ КРИСТАЛЛОВ ПРИ ОКСАЛАТНОМ НЕФРОЛИТИАЗЕ

https://doi.org/10.24884/1561-6274-2009-13-4-37-50

Полный текст:

Аннотация

Настоящий обзор литературы посвящен современному пониманию механизма формирования кристаллов при оксалатном нефролитиазе. Согласно современным представлениям, важнейшим звеном патогенеза оксалатного нефролитиаза является образование в интерстициальном пространстве между базальными мембранами тонкого отдела петли Генле и почечного сосочка минерал-органических отложений (бляшки Рэндалла), их открытие в мочевое пространство вследствие повреждения или гибели нефроцитов, и формирование на них под действием движущих сил кристаллизации оксалатных камней. В условиях наличия метаболических нарушений (гиперкальциурия, гиперфосфатурия, гипероксалурия) этот факт, по-видимому, приобретает ключевое значение в развитии оксалатного нефролитиаза.

Об авторах

А. Ю. Жариков
Алтайский государственный медицинский университет, г. Барнаул
Россия
кафедра фармакологии


Я. Ф. Зверев
Алтайский государственный медицинский университет, г. Барнаул
Россия

кафедра фармакологии

656038, г. Барнаул, пр. Ленина, 40, тел. (3852) 26-08-35



В. М. Брюханов
Алтайский государственный медицинский университет, г. Барнаул
Россия
кафедра фармакологии


В. В. Лампатов
Алтайский государственный медицинский университет, г. Барнаул
Россия
кафедра фармакологии


Список литературы

1. Ryall RL. The future of stone research: rummaging in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res 2008; 36(2): 77-97

2. Cooke SAR. The site of calcification in the human renal papilla. Br J Surg 1970; 57: 890-896

3. Haggit RC, Pitcock JA. Renal medullary calcifications: a light and electron microscopic study. J Urol 1971; 106: 342-347

4. Burry AF, Axelsen RA, Trolove P, Sallis JD. Calcification in the renal medulla: a classification based on a prospective study of 2261 necropsies. Hum Pathol 1976; 7: 435-449

5. Stoller ML, Shami GS, McCormick VD, Kerschmann RL. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 1996; 156: 1263-1266

6. Kok DJ. Intratubular crystallization events. World J Urol 1997; 15 (4): 219-228

7. Брюханов ВМ, Зверев ЯФ, Лампатов ВВ и др. Функция почек в условиях экспериментального оксалатного нефролитиаза. Нефрология 2008; 12 (1): 69-74

8. Henle FGJ. On the anatomy of the kidney. Goettingen Nachrichten 1863: 125-135

9. Randall A. The origin and growth of renal calculi. Ann Surg 1937; 105 (6): 1009-1027

10. Randall A. The initiating lesions of renal calculus. Surg Gynecol Obstet 1937; 64: 201-208

11. Kok DJ. Crystallization and stone formation inside the nephron. Scanning Microsc 1996; 10: 471-485

12. Kok DJ, Schell-Feith EA. Risk factors for crystallization in the nephron: the role of renal development. J Am Soc Nephrol 1999; 10 (14): S364-S370

13. Khan SR, Thamilselvan S. Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol Urol 2000; 4 (4): 305-312

14. Schepers MS, Duim RA, Asselman M et al. Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 2003; 64 (2): 493-500

15. Bushinsky DA. Nephrolithiasis: site of the initial solid phase. J Clin Invest 2003; 111 (5): 602-605

16. Evan AP, Lingeman JE, Coe FL et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 2003; 111: 607–616

17. Sepe V, Adamo G, La Fianza A et al. Henle loop basement membrane as initial site for Randall plaque formation. Am J Kidney Dis 2006; 48 (5): 706-711

18. Bulger RE, Trump BF. Fine structure of the rat renal papilla. Am J Anat 1966; 118: 685-696

19. Pitcock JA, Lyons H, Brown PS et al. Glycosaminoglycans of the rat renomedullary interstitium: ultrastructural and biochemical observations. Exp Mol Pathol 1988; 49 (3): 373-387

20. Вандер А. Физиология почки. Питер, СПб., 2000; 23-35

21. Asselman M, Verkoelen CF. Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 2002; 12: 271-276

22. Жариков АЮ, Брюханов ВМ, Зверев ЯФ, Лампатов ВВ. Современные представления о модуляторах оксалатного нефролитиаза. I. Стимуляторы кристаллизации. Нефрология 2009; 13 (1): 56-72

23. Halperin ML, Kamel KS, Oh MS. Mechanisms to concentrate the urine: an opinion. Curr Opin Nephrol Hypertens 2008; 17 (4): 416-422

24. Asplin JR, Mandel NS, Coe FL. Evidence of calcium phosphate supersaturation in the loop of Henle. Am J Physiol 1996; 270 (4 Pt 2): F604-613

25. Hebert SC, Brown EM, Harris HW. Role of the Ca2+ - sensing receptor in divalent mineral ion homeostasis. J Exp Biol 1997; 200: 295-302

26. Тиктинский ОЛ, Александров ВП. Мочекаменная болезнь. Питер, СПб., 2000; 53-67

27. Кадыров ЗА, Истратов ВГ, Сулейманов СИ. Некоторые вопросы этиологии и патогенеза мочекаменной болезни. Урология 2006; 5: 98-101

28. Зверев ЯФ, Брюханов ВМ, Лампатов ВВ, Жариков АЮ. Современные представления о роли физико-химических факторов в патогенезе кальциевого нефролитиаза. Нефрология 2009; 13 (1): 39-50

29. Verkoelen CF, Verhulst A. Proposed mechanisms in renal tubular crystal retention. Kidney Int 2007; 72: 13-18

30. Vermeulen CW, Lyon ES. Mechanisms of genesis and growth of calculi. Am J Med 1968; 45: 684–692

31. Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease. Invest Urol 1978; 15: 442–448

32. Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 1994; 46: 847–854

33. Evan AP. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 2009; DOI 10.1007/s00467-009-1116-y

34. Randall A. Papillary pathology as a precursor of primary renal calculus. J Urol 1940; 44: 580-589

35. Randall A. The etiology of primary renal calculus. Int Abstr Surg 1940; 71: 209-240

36. Prien EL. The riddle of Randall’s plaques. J Urol 1975; 114: 500-507

37. Verkoelen CF. Crystal retention in renal stone disease: a crucial role for glycosaminoglycan hyaluronan? J Am Soc Nephrol 2006; 17: 1673-1687

38. Anderson L, McDonald JR. The origin, frequency, and significance of microscopic calculi in the kidney. Surg Gynecol Obstet 1946; 82: 275-282

39. Carr RJ. A new theory on the formation of renal calculi. Br J Urol 1954; 26: 105-117

40. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest 2005; 115 (10): 2598-2608

41. Evan AP, Coe FL, Lingeman JE, Worcester E. Insights on the pathology of kidney stone formation. Urol Res 2005; 33 (5): 383-389

42. Evan AP, Coe FL, Rittling SR. et al. Apatite plaque particles in inner medulla of kidneys of CaOx stone formers: osteopontin localization. Kidney Int 2005; 68: 145–154

43. Worcester E, Evan A, Bledsoe S et al. Pathophysiological correlates of two unique renal tubule lesions in rats with intestinal resection. Am J Physiol Renal Physiol 2006; 291 (5): F1061-1069

44. Evan AP, Coe FL, Lingeman JE et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken) 2007; 290 (10): 1315-1323

45. Evan AP, Lingeman JE, Coe FL, Worcester EM. Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 2008; 28 (2): 111-119

46. Wendt-Nordahl G, Evan AP, Spahn M, Knoll T. Calcium oxalate stone formation. New pathogenetic aspects of an old disease. Urologe A 2008; 47 (5): 538, 540-544

47. Miller NL, Gillen DL, Williams JC Jr et al. A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 2009; 103 (7): 966-971

48. Baumann JM, Affolter B, Caprez U et al. Hydroxyapatite induction and secondary aggregation of calcium oxalate, two important processes in calcium stone formation. Urol Res 2001; 29 (6): 417-422

49. Matlaga BR, Williams JC, Kim SC et al. Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 2006; 175: 1720-1724

50. Pak CY. Nephrolithiasis. Curr Ther Endo Metab 1997; 6: 572-576

51. Bushinsky DA. Nephrolithiasis. J Am Soc Nephrol 1998; 9: 917-924

52. Bushinsky DA. Renal lithiasis. In: Humes HD, ed. Kelly’s Textbook of Medicine, New York, 2000; 1243-1248

53. Monk RD, Bushinsky DA. Nephrolithiasis and nephrocalcinosis. In: Johnson R, Frehally J, eds. Comprehensive Clinical Nephrology, London, 2000; 973-989

54. Monk RD, Bushinsky DA.Kidney stones. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, eds. Williams Textbook of Endocrinology, 10th ed., Philadelphia WBSaunders, 2003; 1411-1425

55. Coe FL, Parks JH. Pathogenesis and treatment of nephrolithiasis. In: Seldin D, Giebisch G, eds. The kidney, Philadelphia, 2000; 1841-1867

56. Frick KK, Bushinsky DA. Molecular mechanisms of primary hypercalciuria. J Am Soc Nephrol 2003; 14: 1082-1095

57. Lemann J Jr, Lennon EJ, Piering WF et al. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med 1970; 75: 578-585

58. Breslau NA, Sakhaee K, Pak CY. Impaired adaptation to salt-induced urinary calcium losses in postmenopausal osteoporosis. Trans Assoc Am Physicians 1985; 98:107-115

59. Hess B, Ackermann D, Essig M et al. Renal mass and serum calcitriol in male idiopathic calcium renal stone formers: role of protein intake. J Clin Endocrinol Metab 1995; 80: 1916-1921

60. Favus MJ, Karnauskas AJ, Parks JH, Coe FL. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab 2004; 89: 4937-4943

61. Pearce SH. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 1996; 335: 1115-1122

62. Thakker RV. Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int 2000; 57: 787-793

63. Weber S. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis maps to chromosome 3q27 and is associated with mutations in the PCLN-1 gene. Eur J Hum Genet 2000; 8: 414-422

64. Брюханов ВМ, Зверев ЯФ. Побочные эффекты современных диуретиков. Церис, Новосибирск, 2003; 12-30

65. Naesens M, Steels P, Verberckmoes R et al. Bartter’s and Gitelman’s syndromes: from gene to clinic. Nephron Physiol 2004; 96: 65-78

66. Heller HJ, Pak CYC. Primary hyperparathyroidism. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism, Philadelphia, 2002; 516-534

67. Levi M, Bruesegem S. Renal phosphate–transporter regulatory proteins and nephrolithiasis. N Engl J 2008; 359: 1170-1173

68. Prie D, Ravery V, Boccon-Gibod L, Friedlander G. Frequency of renal phosphate leak among patients with calcium nephrolithiasis. Kidney Int 2001; 60: 272-276

69. Prie D, Huart V, Bakouh N et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2 sodium–phosphate cotransporter. N Engl J Med 2002; 347: 983-991

70. Lapointe JY, Tessier J, Paquette Y et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int 2006; 69: 2261-2267

71. Iwaki T, Sandoval-Cooper MJ, Tenehouse HS, Castellino FJ. A missense mutation in the sodium phosphate co-transporter Slc34a1 impairs phosphate homeostasis. J Am Soc Nephrol 2008; 19 (9): 1753-1762

72. Juareguiberry G, Carpenter TO, Forman S et al. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Renal Physiol 2008; 295: F371-F379

73. Karim Z, Gerard B, Bakouh N et al. Human NHERF1 mutations and responsiveness of the renal parathyroid hormone. N Engl J Med 2008; 359: 1128-1135

74. Hernando N, Gisler SM, Pribanic S et al. NaPi-IIa and interacting partners. J Physiol 2005; 567: 21-26

75. Khundmiri SJ, Ahmad A, Bennett RE et al. Novel regulatory function for NHERF-1 in Npt2a transcription. Am J Physiol Renal Physiol 2008; 294: F840-F849

76. Villa-Bellosta R, Barac-Nieto M, Breusegem SY et al. Interactions of the growth-related, type IIcrenal sodium/phosphate cotransporter with PDZ proteins. Kidney Int 2008; 73: 456-464

77. Вощула ВИ. Мочекаменная болезнь: этиотропное и патогенетическое лечение, профилактика. ВЭВЭР, Минск, 2006; 107-110

78. Danpure CJ, Rumsby G. Molecular aetiology of primary hyperoxaluria and its implications for clinical management. Expert Rev Mol Med 2004; 2004: 1-16

79. Poore RE, Hurst CH, Assimos DG, Holmes RP. Pathways of hepatic oxalate synthesis and their regulation. Am J Physiol 1997; 272 (1): 289-294

80. Baker PR, Cramer SD, Kennedy M et al. Glycolate and glyoxylate metabolism in HepG2 cells. Am J Physiol Cell Physiol 2004; 287 (5): C1359-1365

81. Gambardella RL, Richardson KE. The pathways of oxalate formation from phenylalanine, tyrosine, tryptophan and ascorbic acid in the rat. Biochim Biophys Acta 1977; 499 (1): 156-168

82. Hatch M, Freel RW. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 2008; 28 (2): 143-151

83. Siva S, Barrack ER, Reddy GP et al. A critical analysis of the role of gut Oxalobacter formigenes in oxalate stone disease. BJU Int 2009; 103 (1):18-21

84. Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. Kidney Int 2009; 75 (6): 585-595

85. Soleimani M, The role of SLC26A6-mediated chloride/oxalate exchange in causing susceptibility to nephrolithiasis. J Physiol 2008; 586 (5): 1205-1206

86. Jennings ML, Adame MF. Characterization of oxalate transport by the human erythrocyte band 3 protein. J Gen Physiol 1996; 107 (1):145-159

87. Baggio B, Gambaro G, Marchini F et al. Raised transmembrane oxalate flux in red blood cells in idiopathic calcium oxalate nephrolithiasis. Lancet 1984; 2 (8393): 12-13

88. Gambaro G, Marchini F, Piccoli A et al. The abnormal red-cell oxalate transport is a risk factor for idiopathic calcium nephrolithiasis: a prospective study. J Am Soc Nephrol 1996; 7 (4): 608-612

89. Varalakshmi P, Richardson KE. The effects of vitamin B-6 deficiency and hepatectomy on the synthesis of oxalate from glycolate in the rat. Biochim Biophys Acta 1983; 757 (1): 1-7

90. Nishijima S, Sugaya K, Morozumi M et al. Hepatic alanine-glyoxylate aminotransferase activity and oxalate metabolism in vitamin B6 deficient rats. J Urol 2003; 169 (2): 683-686

91. Thamilselvan S, Hackett RL, Khan SR. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 1997; 157 (3): 1059-1063

92. Thamilselvan S, Khan SR. Oxalate and calcium oxalate crystals are injurious to renal epithelial cells: results of in vivo and in vitro studies. J Nephrol 1998; 11 (1): 66-69

93. Khan SR, Thamilselvan S. Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol Urol 2000; 4 (4): 305-312

94. Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models and tissue-culture studies. Clin Exp Nephrol 2004; 8 (2): 75-88

95. Selvan R. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res 2002; 30 (1): 35-47

96. Thamilselvan S, Khan SR, Menon M. Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 2003; 31 (1): 3-9

97. Rashed T, Menon M, Thamilselvan S. Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 2004; 24 (5): 557-568

98. Зверев ЯФ, Брюханов ВМ, Талалаева ОС и др. О роли процессов свободно-радикального окисления в развитии экспериментального нефролитиаза. Нефрология 2008; 12 (1): 58-63

99. Evan AP, Bledsoe SB, Smith SB, Bushinsky DA. Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 2004; 65 (1): 154-161

100. Green ML, Freel RW, Hatch M. Lipid peroxidation is not the underlying cause of renal injury in hyperoxaluric rats. Kidney Int 2005; 68: 2629-2638

101. Schepers MS, van Ballegooijen ES, Bangma CH, Verkoelen CF. Crystal cause acute necrotic cell death in renal proximal tubule cells but not in collecting tubule cells. Kidney Int 2005; 68 (4): 1543-1553

102. Schepers MS, van Ballegooijen ES, Bangma CH, Verkoelen CF. Oxalate is toxic to renal tubular cells only at supraphysiologic concentrations. Kidney Int 2005; 68 (4): 1660-1669

103. Verkoelen CF, Schepers MS, van Ballegooijen ES, Bangma CH. Effects of luminal oxalate or calcium oxalate on renal tubular cells in culture. Urol Res 2005; 33 (5): 321-328

104. Evan AP, Coe FL, Gillen D et al. Renal intraluminal crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat Rec 2008; 291: 325-334

105. Umekawa T, Chegini N, Khan SR. Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 2002; 61 (1): 105-112

106. Gambaro G, D’Angelo A, Fabris A et al. Crystals, Randall’s plaques and renal stones: Do bone and atherosclerosis teach us something? J Nephrol 2004; 17 (6): 774-777

107. Evan AP, Lingeman JE, Coe FL, Worcester E. Randall’s plaque: pathogenesis and role calcium oxalate nephrolithiasis. Kidney Int 2006; 69: 1313-1318

108. Khan SR. Randall’s plaque and renal injury. Kidney Int 2007; 71: 83

109. Evan AP, Coe F, Lingeman JE. Response to «Randall’s plaque and renal injury». Kidney Int 2007; 71: 83-84

110. Escobar C, Byer KJ, Khaskheli H, Khan SR. Apatite induced renal epithelial injury: insight in to the pathogenesis of kidney stones. J Urol 2008; 180 (1): 379-387

111. Kohjimoto Y, Kennington L, Scheid CR, Honeyman TW. Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int 1999; 56 (4): 1432-1441

112. Scheid C, Honeyman T, Kohjimoto Y et al. Oxalate-induced changes in renal epithelial cell function: role in stone disease. Mol Urol 2000; 4 (4): 371-382

113. Scheid CR, Cao LC, Honeyman T, Jonassen JA. How elevated oxalate can promote kidney stone disease: changes at the surface and in the cytosol of renal cells that promote crystal adherence and growth. Front Biosci 2004; 9: 797-808

114. Ho JH, Lim MJ, Lee YJ. Oxalate inhibits renal proximal tubule cell proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways. Am J Physiol Cell Physiol 2004; 287: C1058-C1066

115. Jonassen JA, Cao LC, Honeyman T, Scheid CR. Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Eukaryot Gene Expr 2003; 13 (1): 55-72

116. Cao LC, Honeyman TW, Cooney R et al. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 2004; 66 (5): 1890-1900

117. Jonassen JA, Cao LC, Honeyman T, Scheid CR. Intracellular events in the initiation of calcium oxalate stones. Nephron Exp Nephrol 2004; 98 (2): e61-е64

118. Cao LC, Honeyman T, Jonassen J, Scheid C. Oxalate-induced ceramide accumulation in Madin-Darby canine kidney and LLC-PK1 cells. Kidney Int 2000; 57 (6): 2403-2411

119. Jonassen JA, Kohjimoto Y, Scheid CR, Schmidt M. Oxalate toxicity in renal cells. Urol Res 2005; 33 (5): 329-339

120. Baggio B, Gambaro G. Abnormal arachidonic acid content of membrane phospholipids—the unifying hypothesis for the genesis of hypercalciuria and hyperoxaluria in idiopathic calcium nephrolithiasis. Nephrol Dial Transplant 1999; 14 (3): 553-555

121. Cupisti A, Meola M, D’Alessandro C et al. Insulin resistance and low urinary citrate excretion in calcium stone formers. Biomed Pharmacother 2007; 61 (1): 86-90

122. Kajander EO, Kuronen I, Еkerman K et al. Nanobacteria from blood, the smallest culturable autonomously replicating agent on earth. Proc SPIE 1997; 3111: 420-428

123. Ciftcioglu N, Bjцrklund M, Willman K et al. Nanobacteria: an infection cause for kidney stone formation. Kidney Int 1999; 56: 1893-1898

124. Hudelist G, Singer CF, Kubista E et al. Presence of nanobacteria in plasmmoma bodies of ovarian cancer: evidence for pathogenetic role in intratumoral biomineralization. Histopathology 2004; 45: 633-637

125. Khullar M, Sharma SK, Singh SK et al. Morphological and immunological characteristics of nanobacteria from human renal stones of a north Indian population. Urol Res 2004; 32: 190-195

126. Miller VM, Rodgers G, Charlesworth JA et al. Evidence of nanobacteria-like structures in calcified human arteries and cardiac valves. Am J Physiol Heart Circ Physiol 2004; 287: 1115-1124

127. Puskбs LG, Tiszlavicz L, Rбzga L et al. Detection of nanobacteria-like particles in human atherosclerotic plaques. Acta Biol Hung 2005; 56: 233-245

128. Shoskes DA, Thomas KD, Gomez E. Antinanobacterial therapy for men with chronic prostatitis/chronic pelvic pain syndrome and prostatic stones: preliminary experience. J Urol 2005; 173: 474-477

129. Wen Y, Li YG, Yang ZL et al. Detection of nanobacteria in serum, bile and gallbladder mucosa of patients with cholecystolithiasis. Chin Med J 2005; 118: 421-424

130. Ciftcioglu N, McKay DC, Mathew G et al. Nanobacteria: fact or fiction? Characteristics, detection, and medical importance of novel self-replicating, calcifying nanoparticles. J Invest Med 2006; 54: 385-394

131. Vali H, McKee MD, Мiftзioрlu N et al. Nanoforms: A new type protein-associated mineralization. Geoch Cosmoch Acta 2001; 65: 63-74

132. Benzerara K, Miller VM, Barell G et al. Search for microbial signatures within human and microbial calcifications using soft x-ray spectromicroscopy. J Invest Med 2006; 54: 367-379

133. Kumar V, Farell G, Yu S et al. Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Invest Med 2006;54: 412-424

134. Shiekh FA, Khullar M, Singh SK. Lithogenesis: induction of renal calcifications by nanobacteria. Urol Res 2006; 34: 53-57

135. Еkerman KK, Kuikka JT, Мiftзioрlu N et al. Radiolabeling and in vivo distribution of nanobacteria in rabbit. Proc SPIE 1997; 3111: 436-442

136. Garcнa Cuerpo E, Kajander EO, Мiftзioрlu N et al. Nanobacteria; un modelo de neo-litogenesis experimental. Arch Esp Urol 2000; 53: 291-303

137. Shiekh FA, Khullar M, Singh SK. Lithogenesis: induction of renal calcification by nanobacteria. Urol Res 2003; 20: 1-5

138. Мiftзioрlu N, Vejdani K, Lee O et al. Association between Randall’s plaque and calcifying nanoparticles. Int J Nanomed 2008; 3 (1): 105-115

139. Cisar JO, Xu D-Q, Thompson J et al. An alternative interpretation of nanobacteria-induced biomineralization. PNAS 2000; 17: 11511-11515

140. Drancourt M, Jacomo V, Lйpidi H et al. Attempted isolation of Nanobacterium spmicroorganisms from upper urinary tract stones. J Clin Microbiol 2003; 41: 368-372


Для цитирования:


Жариков А.Ю., Зверев Я.Ф., Брюханов В.М., Лампатов В.В. МЕХАНИЗМ ФОРМИРОВАНИЯ КРИСТАЛЛОВ ПРИ ОКСАЛАТНОМ НЕФРОЛИТИАЗЕ. Нефрология. 2009;13(4):37-50. https://doi.org/10.24884/1561-6274-2009-13-4-37-50

For citation:


Zharikov A.Yu., Zverev Y.F., Brukhanov V.M., Lampatov V.V. MECHANISM OF FORMATION OF CRYSTALS IN OXALATE NEPHROLITHIASIS. Nephrology (Saint-Petersburg). 2009;13(4):37-50. (In Russ.) https://doi.org/10.24884/1561-6274-2009-13-4-37-50

Просмотров: 173


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)