МОДУЛЯТОРЫ ОКСАЛАТНОГО НЕФРОЛИТИАЗА. ИНГИБИТОРЫ КРИСТАЛЛИЗАЦИИ
https://doi.org/10.24884/1561-6274-2010-14-1-29-49
Аннотация
Обзор литературы посвящен описанию факторов, препятствующих нуклеации, агрегации и росту кристаллов оксалата кальция. Основными белковыми макромолекулами, ингибирующими образование почечных камней, являются протеин Тамма-Хорсфалла, остеопонтин, бикунин и фрагмент 1 протромбина. В обзоре анализируются особенности структуры и функции данных гликопротеинов, обсуждаются их вероятные механизмы действия и роль в патогенезе мочекаменной болезни.
Об авторах
Я. Ф. ЗверевРоссия
кафедра фармакологии
656038, г.Барнаул, пр.Ленина, 40, тел. (3852) 26-08-35
А. Ю. Жариков
Россия
кафедра фармакологии
В. М. Брюханов
Россия
кафедра фармакологии
В. В. Лампатов
Россия
кафедра фармакологии
Список литературы
1. Зверев ЯФ, Брюханов ВМ, Лампатов ВВ, Жариков АЮ. Современные представления о роли физико-химических факторов в патогенезе кальциевого нефролитиаза. Нефрология 2009; 13 (1): 39–50
2. Khan SR, Kok DJ. Modulators of urinary stone formation. Front Biosci; 2004; 9: 1450–1482
3. Kumar V, Lieske JC. Protein regulation of intrarenal crystallization. Curr Opin Nephrol Hypertens 2006; 15 (4): 374–380
4. Dent CE, Sutor DJ. Presence or absence of inhibitor of calcium-oxalate crystal growth in urine of normals and of stone-formers. Lancet 1971; 1: 776–778
5. Kumar V, Farell G, Lieske JC. Whole urinary proteins coat calcium oxalate monohydrate crystals to greatly decrease their adhesion to renal cells. J Urol 2003; 170 (1): 221–225
6. Tamm I, Horsfall FL. Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med 1950; 74: 108–114
7. Майданник ВГ, Дранник ГН. Белок Тамма–Хорсфалла: патогенетическая роль и клиническое значение при урологических и нефрологических заболеваниях. Урол и нефрол 1990; (5): 69–74
8. Kumar S, Muchmore S. Tamm-Horsfall protein-uromodulin (1950-1990). Kidney Int 1990; 37: 1395–1401
9. Gottschalk A. Carbohydrate residue of a urine mucoprotein inhibiting influenza virus haemagglutination. Nature 1952; 170: 662–663
10. Grant AM, Neuberger A. The development of aradioimmunoassay for the measurement of urinary Tamm–Horsfall glycoprotein in the presence of sodium dodecyl sulphate. Clin Sci 1973; 44: 163–179
11. Williams J, Marshall RD, van Halbeek H, Vliegenthart JF. Structural analysis of the carbohydrate moieties of human Tamm Horsfall glycoprotein. Carbohydr Res 1984; 134 (1): 141–155
12. Muchmore AV, Decker JM. Uromodulin: a unique 85 kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 1985; 229: 479–481
13. Peraldi MN. Tamm-Horsfall protein. Nephrologie 1992; 13 (1): 7–11
14. Devuyst O, Dahan K, Pirson Y. Tamm–Horsfall protein or uromodulin: new ideas about an old molecule. Nephrol Dial Transplant 2005; 20 (7): 1290–1294
15. Serafini-Cessi F, Malagolini N, Cavallone D. Tamm-Horsfall glycop-rotein: biology and clinical relevance. Am J Kidney Dis 2003; 658–676
16. Gadella BM. The assembly of a zona pellucida binding protein complex in sperm. Reprod Domest Anim 2008; 43 (5): 12–19
17. Oelschlaeger T, Funfstuck R. Recurrent urinary tract infections in women. Virulence of pathogens and host reaction. Urologe A 2006; 45 (4): 412, 414416, 418–420
18. Pennica D, Kohr WJ, Kuang WJ et al. Identification of human uromodulin as the Tamm–Horsfall urinary glycoprotein. Science 1987; 236: 83–88
19. Bachmann S, Koeppen-Hagemann I, Kriz W. Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry 1985; 83 (6): 531–538
20. Bachmann S, Metzger R, Bunnemann B. Tamm-Horsfall protein-mRNA synthesis is localized to the thick ascending limb of Henle’s loop in rat kidney. Histochemistry 1990; 94 (5): 517-523
21. Malagolini N, Cavallone D, Serafini-Cessi F. Intracellular transport, cell-surface exposure and release of recombinant Tamm-Horsfall glycoprotein. Kidney Int 1997; 52 (5): 1340–1350
22. Pook MA, Jeremiah S, Scheinman SJ et al. Localization of the Tamm-Horsfall glycoprotein (uromodulin) gene to chromosome 16 p 12. 3 - 16 p 13. 11. Ann Hum Genet 1993; 57 (4): 285–290
23. Glauser A, Hochreiter W, Jaeger P, Hess B. Determinants of urinary excretion of Tamm–Horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transplant 2000; 15: 1580–1587
24. Bichler KH, Kirchner Ch, Ideler V. Uromucoid excretion in normal individuals and stone formers. Br J Urol 1976; 47: 733–738
25. Samuell CT. Uromucoid excretion in normal subjects, calcium stone formers and in patients with chronic renal failure. Urol Res 1979; 7: 5–12
26. Thornley C, Dawnay A, Cattell WR. Human Tamm–Horsfall glycoprotein: urinary and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay. Clin Sci 1985; 68: 529–535
27. Scurr DS, Robertson WG. Modifiers of calcium oxalate crystallization found in urine. II. Studies on their mode of action in an artificial urine. J Urol 1986; 136: 128–131
28. Hess B, Zipperle L, Jaeger Ph. Citrate and calcium effects on Tamm–Horsfall glycoprotein as a modifier of calcium oxalate crystal aggregation. Am J Physiol 1993; 265: F784–779
29. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens 2003; 12: 527–532
30. Peters M, Ermert S, Jeck N et. al. Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int 2003; 64: 923–932
31. Зверев ЯФ, Брюханов ВМ, Лампатов ВВ. Заболевания и синдромы, обусловленные генетическими нарушениями почечного транспорта электролитов. Нефрология 2004; 8 (4): 11–24
32. Ying WZ, Sanders PW. Dietary salt regulates expression of Tamm-Horsfall glycoprotein in rats. Kidney Int 1998; 54 (4):1150–1156
33. Bachmann S, Dawnay AB, Bouby N, Bankir L. Tamm-Horsfall protein excretion during chronic alterations in urinary concentration and protein intake in the rat. Renal Physiol Biochem 1991; 14: 236–245
34. Bachmann S, Mutig K, Bates J et al. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am J Physiol Renal Physiol 2005; 288: F559–F567
35. Rampoldi L, Caridi G, Santon D et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 2003; 15: 3369–3384
36. Schmitt R, Kahl T, Mutig K, Bachmann S. Selectively reduced expression of thick ascending limb Tamm-Horsfall protein in hypothyroid kidneys. Histochem Cell Biol 2004; 121 (4): 319–327
37. Fruhauf JH, Welker P, Mutig K et. al. Lipid raft association of essential proteins of the thick ascending limb. J Am Soc Nephrol 2003; 14: 561A
38. Kim GH, Ecelbarger CA, Mitchell C et. al. Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol Renal Physiol 1999; 276: F96–F103
39. Grant AMS, Baker LRI, Neuberger A. Urinary Tamm–Horsfall glycoprotein in certain kidney diseases and its content in renal and bladder calculi. Clin Sci 1973; 44: 377–384
40. Bichler KH. Thirty-eight years of stone meetings in Europe. Urol Res 2006; 34 (2): 70–78
41. Knorle R, Schnierle P, Koch A et. al. Tamm-Horsfall Glycoprotein: Role in Inhibition and Promotion of Renal Calcium Oxalate Stone Formation Studied with Fourier-Transform Infrared Spectroscopy. Clin Chem 1994; 40 (9): 1739–1743
42. Khan SR. Interactions between stone-forming calcific crystals and macromolecules. Urol Int 1997; 59: 59–71
43. Doyle IR, Ryall RL, Marshall VR. Inclusion of proteins into calcium oxalate crystals precipitated from human urine: a highly selective phenomenon. Clin Chem 1991; 37: 1589–1594
44. Kulaksizoglu S, Sofikerim M, Cevik C. Impact of various modifiers on calcium oxalate crystallization. J Urol 2007; 14: 214–218
45. Hess B, Jordi S, Zipperle L et. al. Citrate determines calcium oxalate crystallization kinetics and crystal morphology-studies in the presence of Tamm-Horsfall protein of a healthy subject and a severely recurrent calcium stone former. Nephrol Dial Transplant 2000; 15 (3): 366–374
46. Kumar V, Peсa de la Vega L, Farell G, Lieske JC. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 2005; 68 (4): 1784–1792
47. Mo L, Huang HY, Zhu XH et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 2004; 66 (3): 1159–1166
48. Wikstrцm B, Wieslander J. Excretion of Tamm–Horsfall urinary glycoprotein (uromucoid) in renal stone formers. In: Smith LH et al. eds. Urolithiasis, Clinical and Basic Research. Plenum Press, New York, 1981; 685–688
49. Erwin DT, Kok DJ, Alam J et al. Calcium oxalate stone agglomeration reflects stone-forming activity: citrate inhibition depends on macromolecules larger than 30 kilodalton. Am J Kidney Dis 1994; 24 (6): 893–900
50. Romero MC, Nocera S, Nesse AB. Decreased Tamm-Horsfall protein in lithiasic patients. Clin Biochem 1997; 30 (1): 63-67
51. Hess B, Nakagawa Y, Parks JH, Coe FL. Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol 1991; 260 (4 Pt 2): F569–578
52. Boevй ER, Cao LC, De Bruijn WC et. al. Zeta potential distribution on calcium oxalate crystal and Tamm-Horsfall protein surface analyzed with Doppler electrophoretic light scattering. J Urol 1994; 152 (2 Pt 1): 531–536
53. Storey EL, Anderson GJ, Mack U et. al. Desialylated transferrin as a serological marker of chronic excessive alcohol ingestion. Lancet 1987; i: 1292–1294
54. Rademacher TW, Parekh RB, Dwek RA. Glycobiolor. Ann Rev Biochem 1988; 57: 785–838
55. Sumitra K, Pragasam V, Sakthivel R et al. Benefecialeffect of vitamin E supplementation on the biochemical and kinetic properties of Tamm–Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol Dial Transplant 2005; 20: 1407 –1415
56. Franzйn A, Heinegеrd D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J 1985; 232 (3): 715–724
57. Olberg A, Franzen A, Heidengard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 1986; 83 (23): 8819-8823
58. Helfrich MH, Nesbitt SA, Dorey EL, Horton MA. Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, a b3 integrin. J Bone Miner Res 1992; 7: 335–343
59. Butler WT. Structural and functional domains of osteopontin. Ann N Y Acad Sci 1995; 760: 6–11
60. Hu DD, Lin EC, Kovach NL et al. A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. J Biol Chem 1995; 270: 26232–26238
61. Liaw L, Skinner MP, Raines EW et al. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins: Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest 1995; 95: 713–724
62. Weber GF, Ashkar A, Glimcher MJ, Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271: 509–512
63. Sibalic V, Fan X, Loffing J, Wuthrich RP. Upregulated renal tubular CD44, hyaluronan, and osteopontin in kdkd mice with interstitial nephritis. Nephrol Dial Transplant 1997; 12: 1344-1353
64. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000; 11: 279–303
65. Verhulst A, Asselman M, Persy VP et al. Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding – into a nonadherent epithelium. J Am Soc Nephrol 2003; 14: 107–115
66. Yokosaki Y, Tanaka K, Higashikawa F et al. Distinct structural requirements for binding of the integrins alphavbeta6, alphavbeta3, alphavbeta5, alpha5beta1 and alpha9beta1 to osteopontin. Matrix Biol 2005; 24 (6): 418–427
67. Christensen B, Petersen TE, Sшrensen ES. Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 2008; 411: 53–61
68. Butler WT. The nature and significance of osteopontin. Connect Tissue Res 1989; 23: 123–136
69. Brown LF, Van de Water L, Papadopoulos-Sergiou A et al. Expression and distribution of osteopontin in human tissues: Widespread association with luminal epithelial surfaces. Mol Biol Cell 1992; 2: 1169–1180
70. Giachelli C, Bae N, Lombardi D et al. Molecular cloning and characterization of 2B7, a rat mRNA which distinguishes smooth muscle cell phenotypes in vitro and is identical to osteopontin (secreted phosphoprotein I, 2aR). Biochem Biophys Res Commun 1991; 177: 867–873
71. Giachelli CM, Liaw L, Murry CE et al. Osteopontin expression in cardiovascular diseases. Ann N Y Acad Sci 1995; 760: 109–126
72. Murry CE, Giachelli CM, Schwartz SM, Vracko R. Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol 1994; 145: 1450–1462
73. Sorensen S, Justesen SJ, Johnsen AH. Identification of a macromolecular crystal growth inhibitor in human urine as osteopontin. Urol Res 1995; 23: 327–334
74. Min W, Shiraga H, Chalko C et al. Quantitative studies of human urinary excretion of uropontin. Kidney Int 1998; 53: 189–193
75. Gericke A, Qin C, Spevak L et al. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 2005; 77 (1): 45–54
76. Nomura S, Wills AJ, Edwards DR et al. Developmentaexpression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol 1988; 106: 441–450
77. Patarca R, Freeman GJ, Singh RP et al. Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene: Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J Exp Med 1989; 170: 145–161
78. Shiraga H, Min W, VanDusen WJ et al. Inhibition of calcium oxalate crystal growth in vitro by uropontin: Another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA 1992; 89: 426–430
79. Kohri K, Nomura S, Kitamura Y et al. Structure and expression the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 1993; 268 (15): 15180–15184
80. Denhardt DT, Guo X. Osteopontin: A protein with diverse functions. FASEB J 1993; 7: 1475–1482
81. Uede T, Katagiri Y, Iizuka J, Murakami M. Osteopontin, a coordinator of host defense system: A cytokine or an extracellular adhesive protein? Microbiol Immunol 1997; 41: 641–648
82. O’Brien EK, Garvin MR, Stewart DK et al. Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb 1994; 14: 1648–1656
83. Giachelli CM, Lombardi D, Johnson RJ et al. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol 1998; 152: 353–358
84. Liaw L, Birk DE, Ballas CB et al. Altered wound healing in a mice lacking a functional osteopontin gene (spp1). J Clin Invest 1998; 101: 1468–1478
85. Scatena M, Almeida M, Chaisson ML et al. NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 1998; 141: 1083–1093
86. Katagiri Y, Sleeman J, Fujii H et al. CD44 variants but not CD44s cooperate with І1-containing integrins to permit cells to bind to osteopontin independently of Arg-Gly-Asp acid, thereby stimulating cell motility and chemotaxis. Cancer Res 1999; 59: 219–226
87. Ophascharoensuk V, Giachelli CM, Gorant K et al. Obstructive uropathy in the mouse: role of osteopontin in interstitial fibrosis and apoptosis. Kidney Int 1999; 56: 571–580
88. Sodek J, Batista Da Silva AP, Zohar R. Osteopontin and mucosal protection. J Dent Res 2006; 85 (5): 404–415
89. Denhardt DT, Noda M, O’Regan AW et al. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107: 1055–1061
90. Carlinfante G, Vassiliou D, Svensson O et al. Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis 2003; 20 (5): 437–444
91. Meller R, Stevens SL, Minami M et al. Neuroprotection by osteopontin in stroke. J Cereb Blood Flow Metab 2005; 25 (2): 217–225
92. Hunter GK, Kyle CL, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 1994; 300: 723–728
93. Hunter GK, Hauschka PV, Poole AR et al. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 1996; 317: 59–64
94. Rittling SR, Matsumo HN, McKee MD et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 1998; 13: 1101–1111
95. Boskey AL, Spevak L, Paschalis E et al. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 2002; 71: 145–154
96. Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 1999; 96: 156–160
97. Prince CW, Butler WT. 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. Collagen Rel Res 1987; 7: 305–313
98. Noda M, Rodan GA. Transcriptional regulation of osteopontin production in rat osteoblast-like cells by parathyroid hormone. J Biol Chem 1989; 108: 713–718
99. Noda M, Vogel RL, Craig AM et al. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl Acad Sci USA 1990; 87: 9995–9999
100. Chang PL, Prince CW. 1 Alpha, 25-dihydroxyvitamin D3 stimulates synthesis and secretion of nonphosphorylated osteopontin (secreted phosphoprotein 1) in mouse JB6 epidermal cells. Cancer Res 1994; 51: 2144–2150
101. Ihara H, Denhardt DT, Furuya K et al. Parathyroid hormone-induced bone resorption does not occur in the absence of osteopontin. J Biol Chem 2001; 276: 13065-13071
102. Niskanen LK, Suhonen M, Siitonen O et al. Aortic and lower limb artery calcification in type II (non-insulin-dependent) diabetic patients and non-diabetic control subjects: a five year follow-up study. Atherosclerosis 1990; 84: 61–71
103. Locker TH, Schwartz RS, Cotta CW, Hickman JR. Fluoroscopic coronary artery calcification and associated coronary disease in asymptomatic young men. J Am Coll Cardiol 1992; 19: 1167–1172
104. Puentes G, Detrano R, Tang W et al. Estimation of coronary calcium mass using electron beam computed tomography: a promising approach for predicting coronary events? Circulation 1995; 92: I313
105. Deneke T, Langner K, Gewe PH et al. Ossification in atherosclerotic carotid arteries. Z Kardiol 2001; 90 (Suppl 3): III/106–III/115
106. Olson JC, Edmundowicz D, Becker DJ et al. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes 2000; 49: 1571–1578
107. Hirota S, Imakita M, Kohri K et al. Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol 1993; 143: 1003–1008
108. Ikeda T, Shirasawa T, Esaki Y et al. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest 1993; 92: 2814–2820
109. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 1994; 93: 2393–2402
110. O’Brien KD, Kuusisto J, Reichenbach DD et al. Osteopontin is expressed in human aortic valvular lesions. Circulation 1995; 92: 2163–2168
111. Srivatsa SS, Harrity PJ, Maercklein PB et al. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest 1997; 99: 996–1009
112. Wada T, McKee MD, Steitz S, Giachelli CM. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 1999; 84: 166–178
113. Chen J, Singh K, Mukherjee BB, Sodek J. Developmental expression of osteopontin (OPN) mRNA in rat tissues: Evidence for a role for OPN in bone formation and resorption. Matrix 1993; 13: 113–123
114. Madsen KM, Zhang L., Abu Shamat AR et al. Ultrastructural localization of osteopontin in the kidney: Induction by lipopolysaccharide. J Am Soc Nephrol 1997; 8: 1043–1053
115. Rogers SA, Padanilam BJ, Hruska KA et al. Metanephric osteopontin regulates nephrogenesis in vitro. Am J Physiol 1997; 272: F469–F476
116. Giachelli CM, Pichler R, Lombardi D et al. Osteopontin expression in angiotensin II-induced tubulointerstitial nephritis. Kidney Int 1994; 45: 515–524
117. Pichler RH, Giachelli CM, Lombardi D et al. Tubulointerstitial disease in glomerulonephritis: Potential role of osteopontin (uropontin). Am J Pathol 1994; 144: 915–926
118. Pichler RH, Franceschini N, Young BA et al. Pathogenesis of cyclosporine nephropathy: Roles of angiotensin II and osteopontin. J Am Soc Nephrol 1995; 6: 1186–1196
119. Magil AB, Pichler RH, Johnson RJ. Osteopontin in chronic puromycin aminonucleoside nephrosis. J Am Soc Nephrol 1997; 18: 1383–1390
120. Lopez CA, Hoyer JR, Wilson PD et al. Heterogeneity of osteopontin expression among nephrons in mouse kidneys and enhanced expression in sclerotic glomeruli. Lab Invest 1993; 69: 355–363
121. Kleinman JG, Beshensky A, Worcester EM, Brown D. Expression of osteopontin, a urinary inhibitor of stone mineral crystal growth, in rat kidney. Kidney Int 1995; 47: 1585–1596
122. Hudkins KL, Giachelli CM, Cui Y et al. Osteopontin expression in fetal and mature human kidney. J Am Soc Nephrol 1999; 10: 444–457
123. Worcester EM, Blumenthal SS, Beshensky AM, Lewand DL. The calcium oxalate crystal growth inhibitor protein produced by mouse kidney cortical cells in culture is osteopontin. J Bone Miner Res 1992; 7: 1029–1036
124. Hoyer JP, Otvos LJr, Urge L. Osteopontin in urinary stone formation. Ann N Y Acad Sci 1995; 760: 257–265
125. Worcester EM, Beshensky AM. Osteopontin inhibits nucleation of calcium oxalate crystals. Ann N Y Acad Sci 1995; 760: 375–377
126. Wesson JA, Worcester EM, Weissner JH et al. Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 1998; 53: 952–957
127. Umekawa T. Structural characteristics of osteopontin for calcium oxalate crystal. Nippon Hinyokika Gakkai Zasshi 1999; 90 (3): 436–444
128. Asplin JR, Arsenault D, Parks JH et al. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int 1998; 53: 194–199
129. Lieske JC, Leonard R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol 1995; 268: F604–F612
130. Lieske JC, Hammes MS, Hoyer JR, Toback FG. Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Kidney Int 1997; 51: 679–686
131. Gokhale JA, Glenton PA, Khan SR. Localization of Tamm-Horsfall peotein and osteopontin in a rat nephrolithiasis model. Nephron 1996; 73: 456–461
132. Jiang XJ, Feng T, Chang LS et al. Expression of osteopontin mRNA in normal and stone-forming rat kidney. Urol Res 1998; 26: 389–394
133. Yagisawa T, Chandhoke S, Fan J, Lucia S. Renal osteopontin expression in experimental urolithiasis. J Endourol 1998; 12: 171–176
134. Yasui T, Fujita K, Sasaki S et al. Expression of bone matrix proteins in urolithiasis model rats. Urol Res 1999; 27: 255–261
135. Beshensky AM, Wesson JA, Kleinman JG et al. Renoprotective modulation of calcium oxalate crystal structure by osteopontin in vivo. J Am Soc Nephrol 2000; 11: 558A
136. Mazzali M, Kipari T, Ophascharoensuk V et al. Osteopontin – A molecule for all seasons. QJM 2002; 95 (1): 3–13
137. Wesson JA, Johnson RJ, Mazzali M et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 2003; 14: 139–147
138. Mo L, Liaw L, Evan AP et al. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 2007; 293: F1935–F1943
139. Yasui T, Fujita K, Hayashi Y et al. Quantification of osteopontin in the urine of healthy and stone-forming men. Urol Res 1999; 27: 225–230
140. Nishio S, Hatanaka M, Takeda H et al. Calcium phosphate crystal-associated proteins: alpha2-HS-glycoprotein, prothrombin F1, and osteopontin. Mol Urol 2000; 4: 383–390
141. Huang HS, Ma MC, Chen CF, Chen J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 2003; 62 (6): 1123–1128
142. Tsuji H, Tohru U, Hirotsugu U et al. Urinary concentration of osteopontin and association with urinary supersaturation and crystal formation. Int J Urol 2007; 14 (7): 630–634
143. Bautista DS, Denstedt J, Chambers AF, Harris JF. Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 1996; 61: 402–409
144. Hedgepeth RC, Yang L, Resnick MI, Marengo SR. Expression of proteins that inhibit calcium oxalate crystallization in vitro in the urine of normal and stone-forming individuals. Am J Kidney Dis 2001; 37: 104–112
145. Kleinman LG, Wesson JA, Hughes J. Osteopontin and calcium stone formation. Nephron Physiol 2004; 98: 43-47
146. Yamate T, Tsuji H, Amasaki N et al. Analysis of osteopontin DNA in patients with urolithiasis. Urol Res 2000; 28: 159–166
147. Gao B, Yasui T, Okada A et al. A polymorphism of the osteopontin gene is related to urinary calcium stones. J Urol 2005; 174: 1472–1476
148. Christensen B, Kazanecki CC, Petersen TE et al. Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 2007; 282 (27): 19463–19472
149. Addadi L., Weiner S. Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 1985; 82: 4110–4114
150. Wesson JA, Worcester E. Formation of hydrated calcium oxalate in the presence of poly-L-aspartic acid. Scanning Microsc 1996; 10: 415–424
151. Beshensky AM, Wesson JA, Worcester EM et al. Effects of urinary macromolecules on hydroxyapatite crystal formation. J Am Soc Nephrol 2001; 12: 2108-2116
152. Jung T, Sheng X, Choi CK et al. Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir 2004; 20: 8587–8596
153. Taller A, Grohe B, Rogers KA et al. Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 2007; 93 (5): 1768–1777
154. Kohri K, Suzuki Y, Yoshida K et al. Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 1992; 184: 859–864
155. Yamate T, Kohri K, Umekawa T et al. The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells. Eur Urol 1996; 30: 388–393
156. Yamate T, Kohri K, Umekawa T et al. Interaction between osteopontin on Madin-Darby canine kidney cell membrane and calcium oxalate crystal. Urol Res 1999; 62: 81–86
157. Konya E, Umekawa T, Iguchi M, Kurita T. The role of osteopontin on calcium oxalate crystal formation. Eur Urol 2003; 43 (5): 564–571
158. Yasui T, Fujita K, Asai K, Kohri K. Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells. Int J Urol 2002; 9 (2): 100–108
159. Okada A, Nomura S, Saeki Y et al. Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 2008; 23 (10): 1629–1637
160. Sшrensen ES, Hшjrup P, Petersen TE. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 1995; 4: 2040–2049
161. Christensen B, Nielsen MS, Haselmann KF et al. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylated and five O-glycosylation sites and their biological implications. Biochem J 2005; 390: 285–292
162. Keykhosravani M, Doherty-Kirby A, Zhang C et al. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Biochemistry 2005; 44: 6990–7003
163. Boskey AL, Maresca M, Ullrich W et al. Osteopontin-hydroxyapatite interactions in vitro: Inhibition of hydroxyapatite formation and growth in gelatin-gel. Bone Miner 1993; 22: 147–159
164. Boskey AL. Osteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann N Y Acad Sci 1995; 760: 249–256
165. Goldberg HA, Warner KJ, Li MC, Hunter GK. Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 2001; 42: 25–37
166. Hoyer JR, Asplin JR, Otvos L. Phosphorylated osteopontin peptides suppress crystallization by inhibiting the growth of calcium oxalate crystals. Kidney Int 2001; 60: 77–82
167. Steitz SA, Speer MY, McKee MD et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 2002; 161 (6): 2035–2046
168. Chen Y, Bal BS, Gorski JP. Calcium and collagen binding properties of osteopontin, and bone acidic glycoprotein-75 from bone. J Biol Chem 1992; 276: 24871–24878
169. Coe FL, Boyce WH, Friedman GD et al. Prevention and treatment of kidney stones. J Urol 1989; 141: 804–808
170. Sheng X, Ward MD, Wesson JA. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol 2005; 16 (7): 1904–1908
171. Ryall RL, Chauvet MC, Grover PK. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU International 2005; 96 (4): 654–663
172. Falini G, Albeck S, Weiner S, Addadi L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996; 271: 67–69
173. Жариков АЮ, Зверев ЯФ, Брюханов ВМ, Лампатов ВВ. Современные представления о модуляторах оксалатного нефролитиаза. I. Стимуляторы камнеобразования. Нефрология 2009; 13 (1): 56–72
174. Tomazie BB, Nancollas GH. The kinetics of dissolution of calcium oxalate hydrates II. The dihydrate. Invest Urol 1980; 18: 97–101
175. Lepage L, Tawashi R. Growth and characterization of calcium oxalate dihydrate crystals (weddellite). J Pharm Sci 1982; 71: 1059–1062
176. Wiessner JH, Mandel GS, Mandel NS. Membrane interactions with calcium oxalate crystals: variation in haemolytic potentials with crystal morphology. J Urol 1986; 135: 835–839
177. Wiessner JH, Hung LY, Mandel NS. Crystal attachment to injured renal collecting duct cells. Influence of urine proteins and pH. Kidney Int 2003; 63: 1313–1320
178. Ryall RL, Fleming DE, Grover PK et al. The hole truth. Intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 2000; 4: 391–402
179. Ryall RL, Fleming DE, Doyle IR et al. Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: Implications for kidney stone formation. J Struct Biol 2001; 134: 5–14
180. Fleming DE, van Riessen A, Chauvet MC et al. Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res2003; 18: 1282–1291
181. Canales BK, Anderson L, Higgins L et al. Second prize: Comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix. J Endourol 2008; 22 (6): 1161–1167
182. Merchant ML, Cummins TD, Wilkey DW et al. Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 2008; 295: F1254–F1258
183. Hoyer JR. Uropontin in urinary calcium stone formation. Miner Electrolyte Metab 1995; 20: 385–392
184. Atmani F, Opalko FJ, Khan SR. Association of urinary macromolecules with calcium oxalate crystals induced in vitro in normal human and rat urine. Urol Res 1996; 24: 45–50
185. Webber D, Rodgers AL, Sturrock ED. Selective inclusion of proteins into urinary calcium oxalate crystals: comparison between stone-prone and stone-free population groups. J Cryst Growth 2003; 259: 179–189
186. Chauvet MC, Ryall RL. Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 2005; 151: 12–17
187. Grover PK, Thurgood LA, Fleming DE et al. Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 2008; 294: F355–F361
188. Le Hir M, Dubach UC, Schmidt U. Quantitative distribution of lysosomal hydrolases in the rat nephron. Histochemistry 1979; 63: 245–251
189. Khan SR, Shevock PN, Hackett RL. Urinary enzymes and calcium oxalate urolithiasis. J Urol 1989; 142: 846–849
190. Singh AK. Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J 1993; 25: 562–568
191. Kudo S, Miyamoto G, Kawano K. Proteases involved in the metabolic degradation of human interleukin-1І by rat kidney lysosomes. J Interferon Cytokine Res 1999; 19: 361–367
192. de Bruijn WC, Boeve ER, van Run PR et al. Etiology of experimental calcium oxalate monohydrate nephrolithiasis in rats. Scanning Micr Int 1994; 8: 541–550
193. de Water R, Nordermeer C, van der Kwast TH et al. Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 1999; 33: 761–771
194. de Water R, Nordemeer C, Houtsmuller AS et al. Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 2000; 36: 615–625
195. Khan SR, Byer KJ, Thamilselvan S et al. Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J Am Soc Nephrol 1999; 10: S457–S463
196. Umekawa T, Chegini N, Khan SR. Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cell in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant 2003; 18: 664–669
197. Khan SR, Shevock PN, Hackett RL. Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 1992; 147: 226–230
198. Lieske JC, Deganello S, Toback GF. Cell-crystal interactions and kidney stone formation. Nephron 1999; 81 (Suppl 1): 8–17
199. Тиктинский ОЛ, Александров ВП. Мочекаменная болезнь. СПб: Питер, 2000; 29–30
200. Steinbuch M, Loeb J. Isolation of an α2-globulin from human plasma. Nature 1961; 192: 1196
201. Heide K, Heimburger N, Haupt H. An inter-α-trypsin inhibitor of human serum. Clin Chim Acta 1965; II: 82–85
202. Fries E, Kaczmarczyk A. Inter-α-inhibitor, hyaluronan and inflammation. Acta Biochim Pol 2003; 50 (3): 735–742
203. Chen L, Mao SJT, Larsen WJ. Identification of a factor in fetal bovine serum that stabilizes the cumules extracellular matrix, a role for member of the inter-alpha-inhibitor family. J Biol Chem 1992; 267: 12380–12386
204. Balduyck M, Laroui S, Mizon C, Mizon J. A proteoglycan related to the urinary trypsin inhibitor. Biol Chem Hoppe-Seyler 1989; 370: 331–336
205. Enghild JJ, Thogersen IB, Pizzo SV, Salvesen G. Analysis of inter-alpha-trypsin inhibitor and a novel trypsin inhibitor, pre-alpha-trypsin inhibitor, from human plasma: Polypeptide chain stoichiometry and assembly by glycan. J Biol Chem 1989; 264: 15975–15981
206. Malki N, Balduyck M, Maes P et al. The heavy chains of human plasma inter-alpha-trypsin inhibitor: Their isolation, their identification by electrophoresis and partial sequencing. Biol Chem Hoppe-Seyler 1992; 373: 1009–1018
207. Rouet P, Raguenez G, Tronche F et al. A potent enhancermade of clustered liver specific elements in the transcription control sequences of human alpha1-microglobulin/bikunin gene. J Biol Chem 1992; 267: 20765–20773
208. Hochstrasser K, Bretzel G, Feuth H et al. The inter - ± - trypsin inhibitor as precursor of the acid-stable protease inhibitors in human serum and urine. Hoppe-Seyler’s Z Physiol Chem 1976; 357: 153–162
209. Dietl T, Dobrinski W, Hochstrasser K. Human inter - ± - trypsin inhibitor: Limited proteolysis by trypsin, plasmin, kallikrein, and granulocytic elastase and inhibitory properties of the cleavage products. Hoppe-Seyler’s Z Physiol Chem 1979; 360: 1313–1318
210. Potempa J, Kwon K, Chawla R, Travis J. Inter-α-trypsin inhibitor: Inhibition spectrum of native and derived forms. J Biol Chem 1989; 264: 15109–15114
211. Salier JP. α-trypsin inhibitor: Emergence of a family within the Kunitz-type protease inhibitor superfamily. Trends Biochem Sci 1990; 15: 435–439
212. Xu Y, Carr PD, Guss JM, Ollis DL. The crystal structure of bikunin from inter-alpha-inhibitor complex: a serine protease inhibitor with two Kunitz domains. J Mol Biol 1998; 276 (5): 955–966
213. Freis E, Blom AM. Bikunin – not just a plasma proteinase inhibitors. Int J Biochem Cell Biol 2000; 32 (2): 125–137
214. Pugia MJ, Valdes RJr, Jortani SA. Bikunin (urinary trypsin inhibitor): structure, biological relevance, and measurement. Adv Clin Chem 2007; 44: 223–245
215. Wachter E, Hochstrasser K. Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-α-trypsin inhibitor, IY: the amino acid sequence of the human urinary trypsin inhibitor isolated by affinity chromatography. Hoppe-Seyler’s Z Physiol Chem 1981; 362: 1351–1355
216. Kanayama N, El Maradney E, Halim A et al. Urinary trypsin inhibitor prevents uterine muscle contraction by inhibition of Ca++ influx. Am J Obstet Gynecol 1995; 173: 192–199
217. Kanayama N, Halim A, Maehara K et al. Kunitz-type trypsin inhibitor prevents LPS-induced increase of cytosolic free Ca2+ in human neutrophils and HUVEC cells. Biochem Biophys Res Commun 1995; 207: 324–330
218. Maehara K, Kanayama N, Halim A et al. Down-regulation of interleukin-8 gene expression in HL60 cell line by human Kunitz-type trypsin inhibitor. Biochem Biophys Res Commun 1995; 206: 927–934
219. Zhuo L, Salustri A, Kimata K. A physiological function of serum proteoglycan bikunin: the chondroitin sulfate moiety plays a central role. Glycoconj J 2002; 19 (4-5): 241–247
220. Atmani F, Lacour B, Drueke T, Daudon M. Isolation and purification of a new glycoprotein from human urine inhibiting calcium oxalate crystallization. Urol Res 1993; 21: 61–66
221. Bratt T, Olsson H, Sjoberg EM et al. Cleavage of the a1-microglobulin-bikunin precursor is localized to the Golgi apparatus of rat liver cells. Biochem Biophys Acta 1993; 1157: 147–154
222. Atmani F, Khan SR. Characterization of uronic-acid-rich inhibitor of calcium oxalate crystallization isolated from rat urine. Urol Res1995; 23: 95–101
223. Tang Y, Grover PK, Moritz RL et al. Is nephrocalcin related to the urinary derivative (bikunin) of inter-alpha-trypsin inhibitor? Br J Urol 1995; 75: 425–430
224. Atmani F, Lacour B, Jungers P et al. Molecular characteristics of uronic-acid-rich protein, a strong inhibitor of calcium oxalate crystallization in vitro. Biochem Biophys Res Commun 1993; 191: 1158–1165
225. Atmani F, Lacour B, Jungers P et al. Reduced inhibitory activity of uronic-acid-rich protein in urine of stone formers. 1994; 22: 257–260
226. Sшrensen S, Hansen K, Bak S, Justesen SJ. An unidentified macromolecular inhibitory constituent of calcium oxalate crystal growth in human urine. Urol Res 1990; 18: 373–379
227. Atmani F, Mizon J, Khan SR. Identification of uronic-acid-rich protein as urinary bikunin the light chain of inter-α-inhibitor. Eur J Biochem 1996; 236: 984–990
228. Iida S, Peck AB, Johnson-Tardieu J et al. Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 1999; 10: 986–996
229. Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 2004; 8 (2): 75–88
230. Khan SR. Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 2006; 34 (2): 86–91
231. Grewal JC, Tsai JY, Khan SR. Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 2005; 387 (Pt 3): 609–616
232. Iida S, Johnson-Tardieu J, Glenton P et al. Molecular detection of bikunin in normal and oxalate-exposed kidneys and renal epithelial cells. J Am Soc Nephrol 1997; 8: 563A
233. Atmani F, Glenton PA, Khan SR. Role of inter-alpha-inhibitor and its related proteins in experimentally induced calcium oxalate urolithiasis. Localization of proteins and expression of bikunin gene in the rat kidney. Urol Res 1999; 27 (1): 63–67
234. Moriyama MT, Glenton PA, Khan SR. Expression of inter-alpha-inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 2001; 165 (5): 1687–1692
235. Okuyama M, Yamaguchi S, Yachiku S. Identification of bikunin isolated from human urine inhibits calcium oxalate crystal growth and its localization in the kidneys. Int J Urol 2003; 10 (10): 530–535
236. Atmani F, Mizon J, Khan SR. Inter-a-inhibitor: a protein family involved in the inhibition of calcium oxalate crystallization. Scanning Microsc 1996; 10: 425–433
237. Atmani F, Khan SR. Inter-a-inhibitor, another serum protein with potential involvement in calcium oxalate nephrolithiasis. J Am Soc Nephrol 1996; 7: 1798A
238. Ebisuno S, Nishihata M, Inagaki T et al. Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 1999; 10 (Suppl 14): S436–S440
239. Mйdйtognon-Benissan J, Tardivel S, Hennequin C et al. Inhibitory effect of bikunin on calcium oxalate crystallization in vitro and urinary bikunin decrease in renal stone formers. Urol Res 1999; 27 (1): 69–75
240. Atmani F, Khan SR. Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol 1999; 10: S385–S388
241. Kobayashi H, Shibata K, Fujie M et al. Identification of structural domains in inter-α-trypsin inhibitor involved in calcium oxalate crystallization. Kidney Int 1998; 53: 1727–1735
242. Marengo SR, Resnick MI, Yang L, Chung JY. Differential expression of urinary inter-alpha-trypsin inhibitor trimers and dimers in normal compare to active calcium oxalate stone forming men. J Urol 1998; 159 (5): 1444–1450
243. Evan AP, Bledsoe S, Worcester EM et al. Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 2007; 72 (12): 1503–1511
244. Suzuki M, Kobayashi H, Kageyama S et al. Excretion of bikunin and its fragments in the urine of patients with renal stones. J Urol 2001; 166 (1): 268–274
245. Moczydlowski E, Moss GW, Lucchesi KJ. Bovine pancreatic trypsin inhibitor as a probe of large conductance Ca(2+)-activated K+ channels at an internal site of interaction. Biochem Pharmacol 1992; 43: 21–28
246. Stapleton AM, Ryall RL. Crystal matrix protein—getting blood out of a stone. Miner Electrolyte Metab1994; 20 (6): 399–409
247. Stapleton AM, Simpson RJ, Ryall RL. Crystal matrix protein is related to human prothrombin. Biochem Biophys Res Commun 1993; 195 (3): 1199–1203
248. Suzuki K, Moriyama M, Nakajima C et al. Isolation and partial characterization of crystal matrix protein as a potent inhibitor of calcium oxalate crystal aggregation: evidence of activation peptide of human prothrombin. Urol Res 1994; 22 (1): 45–50
249. Stapleton AM, Ryall RL. Blood coagulation proteins and urolithiasis are linked: crystal matrix protein is the F1activation peptide of human prothrombin. Br J Urol 1995; 75 (6): 712–719
250. Stapleton AM, Dawson CJ, Grover PK et al. Further evidence linking urolithiasis and blood coagulation: urinary prothrombin fragment 1 is present in stone matrix. Kidney Int 1996; 49 (3): 880–888
251. Grover PK, Thurgood LA, Ryall RL. Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 2007; 292 (5): F1396–F1403
252. Atmani F, Glenton PA, Khan SR. Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urol Res 1998; 26 (3): 201–207
253. Ryall RL. Glycosaminoglycans, proteins, and stone formation: adult themes and child’s play. Pediatr Nephrol 1996; 10 (5): 656–666
254. Ryall RL, Grover PK, Stapleton AM et al. The urinary F1 activation peptide of human prothrombin is a potent inhibitor of calcium oxalate crystallization in undiluted human urine in vitro. Clin Sci (Lond)1995; 89 (5): 533–541
255. Grover PK, Ryall RL. Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: relationship between protein structure and inhibitory activity. Eur J Biochem 1999; 263 (1): 50–56
256. Grover PK, Ryall RL. Effect of prothrombin and its activation fragments on calcium oxalate crystal growth and aggregation in undiluted human urine in vitro: relationship between protein structure and inhibitory activity. Clin Sci (Lond) 2002; 102 (4): 425–434
257. Walton RC, Kavanagh JP, Heywood BR, Rao PN. The association of different urinary proteins with calcium oxalate hydromorphs. Evidence for non-specific interactions. Biochim Biophys Acta 2005; 1723 (1-3): 175–183
258. Gul A, Rez P. Models for protein binding to calcium oxalate surfaces. Urol Res 2007; 35 (2): 63–71
259. Webber D, Rodgers AL, Sturrock ED. Synergismbetween urinary prothrombin fragment 1 and urine: a comparison of inhibitory activities in stone-prone and stone-free population groups. Clin Chem Lab Med 2002; 40 (9): 930–936
260. Webber D, Radcliffe CM, Royle L et al. Sialylation of urinary prothrombin fragment 1 is implicated as a contributory factor in the risk of calcium oxalate kidney stone formation. FEBS J 2006; 273 (13): 3024–3037
261. Webber D, Rodgers AL, Sturrock ED. Glycosylation of prothrombin fragment 1 governs calcium oxalate crystal nucleation and aggregation, but not crystal growth. Urol Res 2007; 35 (6): 277–285
262. Buchholz NP, Kim DS, Grover PK at el. The effect of warfarin therapy on the charge properties of urinary prothrombin fragment 1 and crystallization of calcium oxalate in undiluted human urine. J Bone Miner Res 1999; 14 (6): 1003–1012
263. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 2007; 7 (2): 99–111
264. Stapleton AM, Timme TL, Ryall RL. Gene expression of pr othrombin in the human kidney and its potential relevance to kidney stone disease. Br J Urol 1998; 81 (5): 666–671
265. Grover PK, Miyazawa K, Coleman M et al. Renal prothrombin mRNA is significantly decreased in a hyperoxaluric rat model of nephrolithiasis. J Pathol 2006; 210 (3): 273–281
266. Hof M, Fleming GR, Fidler V. Time-resolved fluorescence study of a calcium-induced conformational change in prothrombin fragment 1. Proteins 1996; 24 (4): 485–494
267. Li L, Darden T, Hiskey R, Pedersen LG. Computational studies of human prothrombin fragment 1, the Gla domain of factor IX and several biological interesting mutants. Haemostasis 1996; 26 (1): 54–59
Рецензия
Для цитирования:
Зверев Я.Ф., Жариков А.Ю., Брюханов В.М., Лампатов В.В. МОДУЛЯТОРЫ ОКСАЛАТНОГО НЕФРОЛИТИАЗА. ИНГИБИТОРЫ КРИСТАЛЛИЗАЦИИ. Нефрология. 2010;14(1):29-49. https://doi.org/10.24884/1561-6274-2010-14-1-29-49
For citation:
Zverev Ya.F., Zharikov A.Yu., Brukhanov V.M., Lampatov V.V. MODULATORS OF OXALATE NEPHROLITHIASIS. INHIBITORS’ CRYSTALLIZATION. Nephrology (Saint-Petersburg). 2010;14(1):29-49. (In Russ.) https://doi.org/10.24884/1561-6274-2010-14-1-29-49