ОСТЕОПЕТРОЗ
https://doi.org/10.24884/1561-6274-2010-14-2-20-34
Аннотация
Остеопетроз («болезнь мраморной кости») – это общий термин, включающий в себя группу весьма редких наследственных заболеваний скелета, характеризующихся повышенной плотностью костей, выявляемой при рентгенографии. Встречаемость этих состояний достаточно сложно оценить, однако, считается, что частота аутосомно-рецессивного остеопетроза составляет порядка 1 к 250 000 рождаемым, тогда как аутосомно-доминантный остеопетроз – 1 к 20 000. Описываемые состояния могут значительно различаться по своим проявлениям и их выраженности. Некоторые из них дебютируют в неонатальном периоде с развитием угрожающих жизни осложнений, таких как патология костного мозга (так называемый «злокачественный» аутосомно-рецессивный остеопетроз), другие – являются лишь случайной находкой при рентгенографии (например остеопойкилоз). Классический аутосомно-рецессивный остеопетроз характеризуется переломами, низким ростом, компрессионными нейропатиями, гипокальциемией, сопровождающейся тетаническими судорогами, и угрожающей жизни панцитопенией. Наличие первичной нейродегенерации, умственной отсталости, вовлеченности кожи, иммунной системы или почечного тубулярного ацидоза может привести к более редким вариантам остеопетроза, тогда как начало первичных проявлений патологии скелета, таких как переломы и остеомиелит в позднем детстве или юности, типично для аутосомно-доминантного остеопетроза. Заболевание вызывается нарушением развития или функционирования остеокластов, и в качестве причинных были идентифицированы по крайней мере мутации 10 генов у порядка 70% пациентов. Заболевание может наследоваться по аутосомно-рецессивному, аутосомно-доминантному и сцепленному с полом путям, при этом наиболее тяжелыми формами являются аутосомно-рецессивные. Диагноз в основном основывается на оценке клинических и рентгенологических данных, подтверждаемых генетическим исследованием, когда оно доступно. Установление диагноза дает возможность понять истинную природу заболевания, назначить специфическую терапию, прогнозировать риск передачи потомству и проводить пренатальное выявление тяжелых форм. Лечение описываемой группы заболеваний в основном симптоматическое, также применяется трансплантация стволовых клеток крови при наиболее тяжелых формах, сочетающихся с поражением костного мозга, что определяет наибольшую выживаемость в этой группе. Тяжелые неонатальные формы остеопетроза сочетаются с низкой выживаемостью, большинство пациентов при отсутствии лечения умирают в первую декаду в результате подавления функции костного мозга. Продолжительность жизни при формах, манифестирующих во взрослом возрасте, – обычная. Ожидается, что более глубокое понимание патогенеза описываемых состояний на молекулярном уровне откроет новые мишени для фармакотерапии.
Об авторах
З. СтаркАвстралия
Р. Саварирайан
Австралия
Список литературы
1. Albers-Schonberg Rontgenbilder einer seltenen Knockenerkrankung. Munch Med Wochensch. 1904;5:365–368
2. Superti-Furga A US, and the Nosology Group of the International Skeletal Dysplasia Society Nosology and Classification of Genetic Skeletal Disorders: 2006 Revision. American Journal of Medical Genetics Part A. 2007;143A:1–18. doi: 10.1002/ajmg.a.31483
3. Loria-Cortes R, Quesada-Calvo E, Cordero-Chaverri C. Osteopetrosis in children: a report of 26 cases. J Pediatr 1977;91:43–47
4. Bollerslev J, Andersen PE, Jr Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 1988;9:7–13
5. Al-Tamimi YZ, Tyagi AK, Chumas PD, Crimmins DW. Patients with autosomal-recessive osteopetrosis presenting with hydrocephalus and hindbrain posterior fossa crowding. J Neurosurg Pediatrics. 2008;1:103–106
6. Dozier TS, Duncan IM, Klein AJ, Lambert PR, Key LL., Jr Otologic manifestations of malignant osteopetrosis. Otol Neurotol. 2005;26:762–766
7. Maranda B, Chabot G, Decarie JC, Pata M, Azeddine B, Moreau A, Vacher J. Clinical and cellular manifestations of OSTM1-related infantile osteopetrosis. J Bone Miner Res 2008;23:296–300
8. Steward CG. Neurological aspects of osteopetrosis. Neuropathol Appl Neurobiol 2003;29:87–97
9. Alroy J, Pfannl R, Ucci A, Lefranc G, Frattini A, Megarbane A. Electron microscopic findings in skin biopsies from patients with infantile osteopetrosis and neuronal storage disease. Ultrastruct Pathol 2007;31:333–338
10. Jacquemin C, Mullaney P, Svedberg E. Marble brain syndrome: osteopetrosis, renal acidosis and calcification of the brain. Neuroradiology 1998;40:662–663
11. Whyte MP. Carbonic anhydrase II deficiency. Clin Orthop Relat Res. 1993:52–63
12. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 2008;83:64–76
13. Kilic SS, Etzioni A. The Clinical Spectrum of Leukocyte Adhesion Deficiency (LAD) III due to Defective CalDAG-GEF1. J Clin Immunol 2008
14. Mory A, Feigelson SW, Yarali N, Kilic SS, Bayhan GI, Gershoni-Baruch R, Etzioni A, Alon R. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 2008;112:2591
15. Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 2000;26:87–93
16. Maroteaux P, Lamy M. [Pyknodysostosis.]. Presse Med 1962;70:999–1002
17. Maroteaux P, Lamy M. The Malady of Toulouse-Lautrec. Jama 1965;191:715–717
18. Bartsocas CS. Pycnodysostosis: Toulouse-Lautrec’s and Aesop’s disease? Hormones (Athens) 2002;1:260–262
19. Edelson JG, Obad S, Geiger R, On A, Artul HJ. Pycnodysostosis. Orthopedic aspects with a description of 14 new cases. Clin Orthop Relat Res 1992:263–276
20. Muto T, Michiya H, Taira H, Murase H, Kanazawa M. Pycnodysostosis. Report of a case and review of the Japanese literature, with emphasis on oral and maxillofacial findings. Oral Surg Oral Med Oral Pathol 1991;72:449–455
21. Jones CM, Rennie JS, Blinkhorn AS. Pycnodysostosis. A review of reported dental abnormalities and a report of the dental findings in two cases. Br Dent J 1988;164:218–220
22. Soliman AT, Ramadan MA, Sherif A, Aziz Bedair ES, Rizk MM. Pycnodysostosis: clinical, radiologic, and endocrine evaluation and linear growth after growth hormone therapy. Metabolism 2001;50:905–911
23. Baker RK, Wallach S, Tashjian AH, Jr Plasma calcitonin in pycnodysostosis: intermittently high basal levels and exaggerated responses to calcium and glucagon infusions. J Clin Endocrinol Metab 1973;37:46–55
24. Spranger J, Albrecht C, Rohwedder HJ, Wiedemann HR. [Dysosteosclerosis – a special form of generalized osteosclerosis]. Fortschr Geb Rontgenstr Nuklearmed 1968; 109:504–512
25. Elcioglu NH, Vellodi A, Hall CM. Dysosteosclerosis: a report of three new cases and evolution of the radiological findings. J Med Genet 2002;39:603–607
26. Ghai S, Sharma R, Ghai S. Mixed sclerosing bone dysplasia – a case report with literature review. Clin Imaging 2003; 27:203–205
27. Butkus CE, Michels VV, Lindor NM, Cooney WP. 3rd Melorheostosis in a patient with familial osteopoikilosis. Am J Med Genet 1997;72:43–46
28. Debeer P, Pykels E, Lammens J, Devriendt K, Fryns JP. Melorheostosis in a family with autosomal dominant osteopoikilosis: report of a third family. Am J Med Genet A 2003;119A
29. Nevin NC, Thomas PS, Davis RI, Cowie GH. Melorheostosis in a family with autosomal dominant osteopoikilosis. Am J Med Genet 1999; 82:409–414
30. Voorhoeve N. L’image radiologique non encore decrit d’une anomalie du squelette; ses rapports avec la dyschondroplasie et l’osteopathia condensans disseminata. Acta Radiol 1924;3:407–427
31. Savarirayan R, Nance J, Morris L, Haan E, Couper R. Osteopathia striata with cranial sclerosis: highly variable phenotypic expression within a family. Clin Genet 1997;52:199–205
32. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000;21:115–137
33. Walker DG. The classic: Osteopetrosis cured by temporary parabiosis. Clin Orthop Relat Res 1982:2–3
34. Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001;27:277–285
35. Yoshida H, Hayashi S, Kunisada T, Ogawa M, NishikawaS, Okamura H, Sudo T, Shultz LD, Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444
36. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 2007;39:960–962
37. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001;104:205–215
38. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000;25:343–346
39. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 2000;9:2059–2063
40. Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 1999;23:447–451
41. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 2001;10:1767–1773
42. Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M, et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. Embo J 2005;24:1079–1091
43. Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001;10:2861–2867
44. Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 2006;440:220–223
45. Chalhoub N, Benachenhou N, Vacher J. Physical and transcriptional map of the mouse Chromosome 10 proximal region syntenic to human 6q16-q21. Mamm Genome 2001; 12: 887–892
46. Ramirez A, Faupel J, Goebel I, Stiller A, Beyer S, Stockle C, Hasan C, Bode U, Kornak U, Kubisch C. Identification of a novel mutation in the coding region of the grey-lethal gene OSTM1 in human malignant infantile osteopetrosis. Hum Mutat 2004;23:471–476
47. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 1983;80:2752–2756
48. Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, Heeneman S, Peters C, Reinheckel T, Saftig P, Beertsen W. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res 2006;21:1399–1408
49. Troen BR. The regulation of cathepsin K gene expression. Ann N Y Acad Sci 2006;1068:165–172
50. Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem 1996;271:12517–12524
51. Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, et al. Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res 1997; 12: 1396–1406
52. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998; 95: 13453–13458
53. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 1999; 14: 1654–1663
54. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996;273:1236–1238
55. Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA. A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res 1996;6:1050–1055
56. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 2007;117:919–930
57. van Wesenbeeck L, Odgren PR, Mackay CA, Van Hul W. Localization of the gene causing the osteopetrotic phenotype in the incisors absent (ia) rat on chromosome 10q32.1. J Bone Miner Res 2004;19:183–189
58. Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ, et al. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 2004;36:1213–1218
59. Hellemans J, Debeer P, Wright M, Janecke A, Kjaer KW, Verdonk PC, Savarirayan R, Basel L, Moss C, Roth J, et al. Germline LEMD3 mutations are rare in sporadic patients with isolated melorheostosis. Hum Mutat 2006;27:290
60. Grzeschik KH, Bornholdt D, Oeffner F, Konig A, del Carmen Boente M, Enders H, Fritz B, Hertl M, Grasshoff U, Hofling K, et al. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet 2007; 39:833–835
61. Wang X, Reid Sutton V, Omar Peraza-Llanes J, Yu Z, Rosetta R, Kou YC, Eble TN, Patel A, Thaller C, Fang P, Veyver IB Van den. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 2007;39:836–838
62. Jenkins ZA, van Kogelenberg M, Morgan T, Jeffs A, Fukuzawa R, Pearl E, Thaller C, Hing AV, Porteous ME, Garcia-Minaur S, et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet 2009;41:95–100
63. Waguespack SG, Hui SL, White KE, Buckwalter KA, Econs MJ. Measurement of tartrate-resistant acid phosphatase and the brain isoenzyme of creatine kinase accurately diagnoses type II autosomal dominant osteopetrosis but does not identify gene carriers. J Clin Endocrinol Metab 2002; 87: 2212–2217
64. Alatalo SL, Ivaska KK, Waguespack SG, Econs MJ, Vaananen HK, Halleen JM. Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis). Clin Chem 2004; 50: 883–890
65. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 2006; 43:315–325
66. Ogur G, Ogur E, Celasun B, Baser I, Imirzalioglu N, Ozturk T, Alemdaroglu A. Prenatal diagnosis of autosomal recessive osteopetrosis, infantile type, by X-ray evaluation. Prenat Diagn 1995;15:477–481
67. Landa J, Margolis N, Di Cesare P. Orthopaedic management of the patient with osteopetrosis. J Am Acad Orthop Surg 2007;15:654–662
68. Hwang JM, Kim IO, Wang KC. Complete visual recoveryin osteopetrosis by early optic nerve decompression. Pediatr Neurosurg 2000;33:328–332
69. Driessen GJ, Gerritsen EJ, Fischer A, Fasth A, Hop WC, Veys P, Porta F, Cant A, Steward CG, Vossen JM et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant 2003;32:657–663
70. Steward CG, Pellier I, Mahajan A, Ashworth MT, Stuart AG, Fasth A, Lang D, Fischer A, Friedrich W, Schulz AS. Severe pulmonary hypertension: a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br J Haematol 2004;124:63–71
71. Frattini A, Blair HC, Sacco MG, Cerisoli F, Faggioli F, Cato EM, Pangrazio A, Musio A, Rucci F, Sobacchi C, et al. Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proc Natl Acad Sci USA 2005;102:14629–14634
72. Key LL, Jr, Ries WL, Rodriguiz RM, Hatcher HC. Recombinant human interferon gamma therapy for osteopetrosis. J Pediatr 1992;121:119–124
73. Key LL, Jr, Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL. Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 1995;332:1594–1599
74. Kocher MS, Kasser JR. Osteopetrosis. Am J Orthop 2003; 32:222–228
75. Key L, Carnes D, Cole S, Holtrop M, Bar-Shavit Z, Shapiro F, Arceci R, Steinberg J, Gundberg C, Kahn A et al. Treatment of congenital osteopetrosis with high-dose calcitriol. N Engl J Med 1984;310:409–415
76. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile Malignant, Autosomal Recessive Osteopetrosis: The Rich and The Poor. Calcif Tissue Int 2008
77. Del Fattore ACA, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone 2008;42:19–29
Рецензия
Для цитирования:
Старк З., Саварирайан Р. ОСТЕОПЕТРОЗ. Нефрология. 2010;14(2):20-34. https://doi.org/10.24884/1561-6274-2010-14-2-20-34
For citation:
Stark Z., Savarirayan R. OSTEOPETROSIS. Nephrology (Saint-Petersburg). 2010;14(2):20-34. (In Russ.) https://doi.org/10.24884/1561-6274-2010-14-2-20-34