Preview

Nephrology (Saint-Petersburg)

Advanced search

COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASES INTESTINAL MICROBIOTA AND CHRONIC KIDNEY DISEASE. PART II

https://doi.org/10.24884/1561-6274-2018-23-1-18-31

Abstract

Interest in studying the role of the gastrointestinal tract in maintaining homeostasis in chronic kidney disease is a traditional one. It served, in particular, as a starting point for the creation of enterosorbents. However, if earlier the main attention was paid to the mechanical removal of a number of potentially dangerous biologically active substances, recently an intestinal microbiota has become an object of interest. The first part of the review of the literature on this topic is devoted to questions of terminology, the normal physiology of the colon microbiota. A detailed description of dysbiosis is given. The features of the main groups of microorganisms are reflected. The hypothetical and confirmed interrelations of the intestine-kidney axis are presented. The pathogenetic mechanisms of the influence of colon dysbiosis on the processes of local and systemic inflammation are discussed. The influence of dysbiosis on the state of the kidney parenchyma and its participation in the progression of CKD are debated.

About the Authors

B. G. Lukichev
Department of propedeutics of internal diseases of First Pavlov St-Petersburg State Medical University
Russian Federation

Prof. Boris G. Lukichev MD, PhD, DMedSci 

197022, St-Petersburg, L. Tolstoy st., 17, build. 54, First Pavlov St-Petersburg State Medical University, Department of propedeutics of internal diseases.

Phone: (812)-234-01-65



A. Sh. Rumyantsev
Department of propedeutics of internal diseases of First Pavlov St-Petersburg State Medical University; Department of Faculty Therapy of Saint Petersburg State University
Russian Federation

Prof. Alexandr Sh.Rumyantsev MD, PhD, DMedSci

199106 Russia, Saint Petersburg, V.O., 21 line 8a. Saint Petersburg State University Department of Faculty Therapy

Phone: +7(812) 326-03-26



I. Yu. Panina
Department of propedeutics of internal diseases of First Pavlov St-Petersburg State Medical University
Russian Federation

Prof. Irina Yu. Panina MD, PhD, DMedSci

197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54, First Pavlov St-Petersburg State Medical University, Department of propedeutics of internal diseases.

Phone: (812)-234-01-65



V. Akimenko
Department of propedeutics of internal diseases of First Pavlov St-Petersburg State Medical University
Russian Federation

Akimenko V.

197022, Russia, St-Petersburg, L. Tolstoy st., 17, build. 54, First Pavlov St-Petersburg State Medical University, Department of propedeutics of internal diseases.

Phone: (812)-234-01-65



References

1. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014; 25: 657–670 Doi:10.1681/ASN.2013080905

2. Vaziri ND. Effect of Synbiotic Therapy on Gut-Derived Uremic Toxins and the Intestinal Microbiome in Patients with CKD. Clin J Am Soc Nephrol 2016; 11(2): 199–201. Doi: 10.2215/CJN.13631215

3. Wu MJ, Chang CS, ChengCH et al. Colonic transit time in long-term dialysis patients. Am J Kidney Dis 2004; 44: 322–327

4. Guldris SC, Parra EG, Amenos AC. Gut microbiota in chronic kidney disease. Nefrología 2017; 37 (1-2): 9–19 Doi: 10.1016/j.nefro.2016.05.008

5. Castillo-Rodriguez E, Fernandez-Prado R, Esteras R et al. Impact of Altered Intestinal Microbiota on Chronic Kidney Disease Progression. Toxins (Basel) 2018; 10 (7): 300. Doi:10.3390/toxins10070300

6. Koppe L, Fouque D, Soulage CO. The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins (Basel) 2018;10(4):155. Doi:10.3390/toxins10040155

7. Jakobsson HE, Jemberg C, Andersson AF et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010; 5: e9836. Doi.org/10.1371/journal.pone.0009836

8. Jemberg C, Lofmark S, Edlund C, Jansson JK. Long-term impact of antibiotic exposure on the human intestinal microbiota. Microbiology 2010; 156: 3216–3223. Doi: 10.1099/mic.0.040618-0

9. Aron-Wisnewsky JA, Clement K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 2016;12: 169–181. Doi: 10.1038/nrneph.2015

10. Mafra D, Lobo JC, Barros F et al. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 2014;9: 399–410. Doi.org/10.2217/fmb.13.165.10.2217/fmb.13.165

11. Coppa GV, Bruni S, Morelli L et al. The first prebiotics in humans: human milk oligosaccharides. J Clin Gastroenterol 2004; 38, suppl. 6: S80–S83

12. Gibson GR, Roberfroid MB. Dietary modulation of the colonic microbiota: introducing the concept of prebiotics. J Nutr 1995;125:1401–1412

13. Bindels LB, Delzenne NM, Cani PD et al. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015; 12: 303–310

14. Louis P, Flint HJ, Michel C. How to Manipulate the Microbiota: Prebiotics. Adv Exp Med Biol 2016; 902: 119–142. Doi: 10.1007/978-3-319-31248-4_9

15. Singla V, Chakkaravarthi S. Applications of prebiotics in food industry: A review. Food Sci Technol Int 2017 Dec; 23(8): 649–667. Doi: 10.1177/1082013217721769

16. Reid G, Sanders M, Gaskins H. New scientific paradigms for probiotics and prebiotics. J Clin 2003;37(2):105–118

17. Gibson GR, Probert HM, Van Loo J et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004;17(2):259–275

18. Pineiro M, Asp N-G, Reid G et al. FAO technical meeting on prebiotics. J Clin Gastroenterol 2008;42: S156–159

19. Gibson GR, Scott KP, Rastall RA et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 2010;7(1):1–19

20. Bird AR, Conlon MA, Christophersen CT et al. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef Microbes 2010; 1: 423–431. Doi: 10.3920/BM2010.0041

21. Hutkins RW, Krumbeck JA, Bindels LB et al. Prebiotics: why definitions matter. Curr Opin Biotechnol 2016; 37: 1–7

22. Тарасенко НА, Филиппова ЕВ. Кратко о пребиотиках: история, классификация, получение, применение. Фундаментальные исследования; 2014; (6-1): 45–48

23. United States Food and Drug Administration. Guidance for Industry on Center for Drug Evaluation and Research (CDER) Center for Devices and Radiological Health (CDRH) Center for Food Safety and Applied Nutrition (CFSAN). Off Commun Training, Manuf Assist 2007

24. van Loveren H, Sanz Y, Salminen S. Health claims in Europe: probiotics and prebiotics as case examples. Annu Rev Food Sci Tech 2012;3:247–261

25. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 2008; 111: 1–66

26. Carlson JL, Erickson JM, Lloyd BB, Slavin JL. Health Effects and Sources of Prebiotic Dietary Fiber. Curr Dev Nutr 2018; 2: nzy005. Doi: 10.1093/cdn/nzy005

27. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012; 56(1):184–196. Doi: 10.1002/mnfr.201100542

28. De Preter V, Vanhoutte T, Huys G et al. Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Aliment Pharmacol Ther 2006;23(7): 963–974

29. De Preter V, Coopmans T, Rutgeerts P, Verbeke K. Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. J Am Coll Nutr 2006;25(6):541–549

30. Geboes KP, De Hertogh G, De Preter V et al. The influence of inulin on the absorption of nitrogen and the production of metabolites of protein fermentation in the colon. Br J Nutr 2006; 96(6):1078–1086

31. Gibson GR, McCartney AL, Rastall RA. Prebiotics and resistance to gastrointestinal infections. Br J Nutr 2005; 93(Suppl 1): S31–34

32. Husby S, Jensenius JC, Svehag SE. Passage of undegraded dietary antigen in to the blood of adults. Quantification, estimarion of size distribution, and relation of antibodies. Scand J Immunol 1985; 22:83–92

33. Shimizu M. Interaction between food substances and the intestinal epithelium. Biosci Biotechnol Biochem 2010; 74: 232–241

34. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009 Nov; 9(11):799–809. Doi: 10.1038/nri2653

35. Patel S, Behara R, Swanson GR et al. Alcohol and the intestine. Biomolecules 2015; 5:2573–2588

36. Raybould HE. Gut microbiota, epithelial function and derangements in obesity. J Physiol 2012; 590:441–446

37. Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 2008;100(2):297–305

38. Cani PD, Possemiers S, Van de Wiele T et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58(8):1091–1103

39. Wong JMW, de Souza R, Kendall CWC et al. Ovid: colonic health: fermentation and short chain fatty acids. Clin Gastroenterol 2006;40(3):235–243

40. Machiels K, Joossens M, Sabino J et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014;63(8):1275–1283

41. Carlson J, Esparza J, Swan J et al. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food Funct 2016;7(4):1833–1838

42. Cashman KD. Calcium intake, calcium bioavailability and bone health. Br J Nutr 2002;87 (Suppl 2): S169–177

43. Whisner CM, Martin BR, Schoterman MHC et al. Galacto oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr 2013;110(7): 1292–1303. Doi: 10.1017/S000711451300055X

44. Ellegard L, Andersson H, Bosaeus I. Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. Eur J Clin Nutr 1997;51(1):1–5

45. van den Heuvel EG, Schoterman MH, Muijs T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 2000;130(12):2938–2942

46. Tahiri M, Tressol JC, Arnaud J et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: a stable-isotope study. Am J Clin Nutr 2003;77(2):449–457

47. Lopez-Huertas E, Teucher B, Boza JJ et al. Absorption of calcium from milks enriched with fructo-oligosaccharides, caseinophosphopeptides, tricalcium phosphate, and milk solids. Am J Clin Nutr 2006;83(2):310–316

48. van den Heuvel EG, Schaafsma G, Muys T et al. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am J Clin Nutr 1998;67(3): 445–451

49. Tahiri M, Tressol JC, Arnaud J et al. Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 2001;16(11):2152–2160

50. Griffin I, Davila P, Abrams S. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 2002;87(Suppl 2):S187–191

51. Abrams S, Griffin I, Hawthorne K. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 2005;82(2):471–476

52. Global Market Insights. Prebiotics market size by ingredient (inulin, GOS, FOS, MOS), by application (animal feed, food & beverages [dairy, cereals, baked goods, fermented meat, dry foods], dietary supplements [food, nutrition, infant formulations]), industry analysis report, regional outlook, application potential, price trends, competitive market share & forecast, 2017–2024 [Internet]. 2017. Available from: https://www.gminsights.com/industry-analysis/prebiotics-market

53. De Preter V, Vanhoutte T, Huys G et al. Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructoseenriched inulin on colonic nitrogen–protein metabolism in healthy humans. Am J Physiol Gastrointest Liver Physiol 2007; 292: G358–G368

54. Patel K, Luo F, Recht N et al. A vegetarian diet reduces production of colon-derived uremic solutes [abstract]. J Am Soc Nephrol 2008; 19: 488A

55. Meijers BK, De Preter V, Verbeke K et al. P-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 2010; 25: 219–224

56. Bliss DZ, Stein TP, Schleifer CR, Settle RG. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr 1996; 63: 392–391

57. Sirich TL, Plummer NS, Gardner CD et al. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 2014;9: 1603–1610. Doi: 10.2215/CJN.00490114

58. Vaziri ND, Liu SM, Lau WL et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 2014;9: e114881. Doi.org/10.1371/journal.pone.0114881

59. Vaziri ND, Zhao Y, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrology Dialysis Transplantation 2016;31(5):737–746. Doi: 10.1093/ndt/gfv095. Doi: 10.1093/ndt/gfv095

60. Hill C, Guarner F, Reid G et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11: 506–514. Doi: 10.1038/nrgastro.2014.66

61. Johnson-Henry KC, Hagen KE, Gordonpour M et al. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol 2007; 9: 356–367

62. Mack DR, Ahrne S, Hyde L, Wei S et al. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003; 52: 827–833

63. Yan F, Cao H, Cover TL et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 2007; 132: 562–575

64. Seth A, Yan F, Polk DB, Rao RK. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKCand MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2008; 294: G1060–G1069

65. Mennigen R, Nolte K, Rijcken E et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296: G1140–G1149

66. Power SE, O’Toole PW, Stanton C et al. Intestinal microbiota, diet and health. Br J Nutr 2014; 111: 387–402. Doi: 10.1017/S0007114513002560

67. Keddis MT, Khanna S, Noheria A et al. Clostridium difficile infection in patients with chronic kidney disease. Mayo Clin Proc 2012; 87: 1046–1053. Doi: 10.1016/j.mayocp.2012.05.025

68. Fayol-Messaoudi D, Berger CN, Coconnier-Polter M-H et al. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 2005; 71: 6008–6013

69. Schlee M, Harder J, Koten B et al. Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 2008; 151: 528–535

70. Dalmasso G, Cottrez F, Imbert V et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology 2006; 131: 1812–1825

71. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8: 411–420

72. Delzenne NM, Neyrinck AM, Backhed F et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011; 7: 639–646. Doi: 10.1038/nrendo.2011.126

73. Sayin SI, Wahlstrom A, Felin J et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-betamuricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17: 225–235. Doi: 10.1016/j.cmet.2013.01.003

74. Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 2006; 72: 1729–1738

75. Everard A, Belzer C, Geurts L et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity. Proc Natl Acad Sci USA 2013; 110: 9066–9071. Doi.org/10.1073/pnas.1219451110

76. Hempel S, Newberry S, Ruelaz A et al. Safety of probiotics used to reduce risk and prevent or treat disease. Evid Rep Technol Assess (Full rep) 2011:2000;1–645

77. Ramezani A, Massy ZA, Meijers B et al. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 2016; 67(3): 483–498.Doi: 10.1053/j.ajkd.2015.09.027

78. Simenhoff ML, Dunn SR, Zollner GP et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 1996; 22: 92–96

79. Ranganathan N, Patel B, Ranganathan P et al. Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats. Scietific World Journal 2005; 5: 652–660

80. Ranganathan N, Friedman EA, Tam P et al. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin 2009;25: 1919–1930

81. Ranganathan N, Ranganathan P, Friedman EA et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 2010; 27:634–647

82. Wang IK, Wu YY, Yang YF et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 2015; 6(4):423–430. doi: 10.3920/BM2014.0088

83. Rossi M, Johnson DW, Morrison M et al. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. Clin J Am Soc Nephrol 2016;11(2):223–231

84. Vanholder R, Glorieux G. The intestine and the kidneys: A bad marriage can be hazardous. Clin Kidney J 2015; 8: 168–179

85. Mishima E, Fukuda Sh, Mukawa Ch. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CETOFMS–based metabolomics approach. Kidney International 2017; 92 (2): 634–645

86. Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 2012; 21: 587–592

87. Mora D, Arioli S. Microbial urease in health and disease. PLoS Pathog 2014;10(12):e1004472. doi: 10.1371/ journal.ppat.1004472; Rutherford JC. The emerging role of urease as a general microbial virulence factor. PLoS Pathog 2014;10(5):e1004062. doi:10.1371/journal.ppat.1004062

88. Hida M, Aiba Y, Sawamura S et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996;74:349–355

89. Prakash S, Chang TM. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 1996; 2: 883–887

90. Swanson KS, Grieshop CM, Flickinger EA. Fructooligosaccharides and Lactobacillus acidophilus modify bowel function and protein catabolites excreted by healthy humans. J Nutr 2002; 132: 3042–3050

91. Ando Y, Miyata Y, Tanba K et al. Effect of oral intake of an enteric capsule preparation сontaining Bifidobacterium longum on the progression щf chronic renal failure. Nihon Jinzo Gakkai Shi 2003;45:759–764

92. Takayama F, Taki K, Niwa T. Bifidobacterium in gastroresistant seamless capsule reduces serum levels of indoxylsulfate in patients on hemodialysis. Am J Kidney Dis 2003;41:S142–145

93. Taki K, Takayama F, Niwa T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr 2005;15:77–80

94. de Preter V, Vanhoutte T, Huys G et al. Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects. Aliment Pharmacol Ther 2008; 27: 504–513

95. Nakabayashi I, Nakamura M, Kawakami K et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. Nephrol Dial Transplant 2011; 26(3):1094–1098. doi: 10.1093/ndt/gfq624

96. Ogawa T, Shimada M, Nagano N et al. Oral administration of Bifidobacterium longum in a gastro-resistant seamless capsule decreases serum phosphate levels in patients receiving haemodialysis. Clin Kidney J 2012;5:373–374

97. Alatriste MPV, Arronte UR, Espinosa GCO et al. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp 2014;29:582–590

98. Cruz-Mora J, Martínez-Hernández NE, Martín del Campo-López F et al. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal. J Ren Nutr 2014 Sep;24(5): 330–335. doi: 10.1053/j.jrn.2014.05.006

99. Guida B, Germano R, Trio R et al. Effect of short – term symbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: A ranlomized clinical trial. Nutr Metab Cardiovasc Dis 2014; 24: 1043–1049

100. Natarajan R, Pechenyak B, Vyas U et al. Randomized controlled trial of strain-specific probiotic fórmulation (Renadyl) in dialysis patients. Biomed Res Int 2014;2014:568–571

101. Viramontes-Hörner D, Márquez-Sandoval F, Martín-delCampo F et al. Effect of a symbiotic gel (Lactobacillus acidophilus + Bifidobacterium Lactis + Inulin) on presence and severity of gastrointestinal symptoms in hemodialysis patients. J Ren Nutr 2015; 25:284–291

102. Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol Nephrol 2016;68(2):222–226


Review

For citations:


Lukichev B.G., Rumyantsev A.Sh., Panina I.Yu., Akimenko V. COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASES INTESTINAL MICROBIOTA AND CHRONIC KIDNEY DISEASE. PART II. Nephrology (Saint-Petersburg). 2019;23(1):18-31. (In Russ.) https://doi.org/10.24884/1561-6274-2018-23-1-18-31

Views: 3956


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)