Preview

Nephrology (Saint-Petersburg)

Advanced search

Changes in the reactivity of vessels of rats with an experimental decrease in the mass of functioning nephrons

https://doi.org/10.24884/1561-6274-2019-23-4-88-95

Abstract

The aim: to evaluate changes in endothelium-dependent regulation of the tone of blood vessels (aorta and superior mesenteric artery) in rats 4 months after the removal of 5/6 renal tissue.

Material and methods. An experimental CKD model was created by resection of 5/6 mass of renal tissue. The experimental group included animals (n = 12), subjected to nephrectomy (NE). The control group consisted of sham-operated (SO) rats (n = 10). Researches of vascular reactivity were performed on ring segments 2 mm long, which were excised from the aorta and superior mesenteric artery (SMA). A total of 23 segments of the aorta and 17 segments of SMA from rats after NE and 18 segments of the aorta and 15 segments of SMA from control animals were prepared. To measure the strength of contractions of the drugs, a FORT-10 sensor (WPI, USA) was used. The effects of acetylcholine (Ach, 1 x10-6 M) on blood vessels, previously exposed to phenylephrine (1 x10-5 M), and the response of vessels to Ach under conditions of prior exposure to TEA (1 x 10-3 mol / l) and L-NAME (1 x10-4 mol / l) were evaluated.

Results. NE for a period of 4 months led to arterial hypertension - BP in the NE group of rats was higher (165, 0 ± 9.8 mm Hg) compared with SO (127.2 ± 9.7 mm Hg, р<0,001), and to myocardial remodeling (LVMI in NE rat was 2.72 ± 0.11 mg / g compared to 2.35 ± 0.09 mg / in the SO group, р<0,001 ). NE led to a decrease in dilatation of aortic and BWA fragments on the ACh compared with LO animals. Under the conditions of NO blocking, the NO synthase inhibitor — L-NAME — also had a lower response to ACh in rats with NE. The preliminary blockade of the Ca2 + -activated K + channels of high conductivity with the introduction of TEA resulted in a decrease in vasodilation caused by ACh in NE rat compared with the SO group.

Conclusion. Resection of 5/6 of the kidney tissue mass in rats causes a decrease in vascular reactivity on the ACh. Endothelial dysfunction of rats after NE is associated with impairment of both NO-related and hyperpolarization-dependent endothelial cells in pathways of the vascular tone regulation.

About the Authors

G. T. Ivanova
I.P Pavlov Institute of Physiology
Russian Federation

Ivanova Galina Tazhimovna – PhD, senior researcher.

199034, Saint-Petersburg, Makarova Emb., 6, Phone: 8 (812) 328-07-01



G. I. Lobov
I.P Pavlov Institute of Physiology
Russian Federation

Lobov Gennadii Ivanovich - PhD, DMedSci, head of laboratory.

199934, Saint-Petersburg, Makarova Emb., 6, Ph. +7 921 7430608



O. N. Beresneva
Institute of Nephrology, First Pavlov St.-Petersburg State Medical University
Russian Federation

Olga N. Beresneva - PhD, Nephrology Laboratory of Clinical Physiology of the Kidney, senior researcher.

197022, St-Petersburg , L.Tolstoy st., 17, build. 54, Phone (812)346-39-26



M. M. Parastaeva
Institute of Nephrology, First Pavlov St.-Petersburg State Medical University
Russian Federation

Marina M. Parastaeva - PhD, Nephrology Laboratory of Clinical Physiology of the Kidney senior researcher.

197022, St-Petersburg, L.Tolstoy st., 17, build. 54, Phone (812)346-39-26



References

1. Smirnov AV, Dobronravov VA, Kayukov IG. Kardiorenalnyj continuum: patogeneticheskie osnovy preventivnoj nefrologii. Nefrologiya 2005; 9(3):7-15]

2. Di Lullo L, Bellasi A, Barbera V et al. Pathophysiology of the cardio-renal syndromes types 1-5: An uptodate. Indian Heart J 2017; 69(2): 255-265. Doi: 10.1016/j.ihj.2017.01.005

3. Foley RN, Parfrey PS. Cardiac disease in chronic uremia: clinical outcome and risk factors. Adv Renal Replace Ther 1997; 4: 234-248

4. Go AS, Chertow GM, Fan D et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296-1305. Doi: 10.1056/NEJMoa041031

5. Ninomiya T, Kiyohara X Kubo M et al. Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama Study. Kidney Int 2005; 68 (1): 228-236

6. Afsar B, Turkmen K, Covic A, Kanbay M. An update on coronary artery disease and chronic kidney disease. Int J Nephrol 2014; 76(7): 424. Doi: 10.1155/2014/767424

7. Choi HX Park HC, Ha SK. How do We manage coronary artery disease in patients with CKD and ESRD? Electrolyte Blood Press 2014; 12 (2): 41-54. Doi: 10.5049/EBP.2014.12.2.41

8. Padberg JS, Wiesinger A, di Marco GS. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 2014; 234(2): 335-343. Doi: 10.1016/j.atherosclerosis.2014.03.016

9. Foley RN, Wang C, Collins AJ. Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study. Mayo Clin Proc 2005; 80(10): 1270-1277. Doi: 10.4065/80.10.1270

10. Baber U, Gutierrez OM, Levitan EB et al. Risk for recurrent coronary heart disease and all-cause mortality among individuals with chronic kidney disease compared with diabetes mellitus, metabolic syndrome, and cigarette smokers. Am Heart J 2013; 166(2): 373-380.e2. Doi: 10.1016/j.ahj

11. Jimbo R, Shimosawa T Cardiovascular risk factors and chronic kidney disease-FGF23: a key molecule in the cardiovascular disease. Int J Hypertens 2014; 182: 82-98. Doi: 10.1155/2014/381082

12. Mancia G, Fagard R, Zanchetti A. Reply to blood pressure target in chronic kidney disease. J Hypertens 2013; 31(11): 2321-2322. Doi: 10.1097/HJH.0b013e328365a00a

13. Karabaeva AZH, Esayan AM, Kayukov IG i dr. Vliyanie spironolaktona na gipertrofiyu miokarda levogo zheludochka u krys vistar s ehksperimentalnoj uremiej. Byull ehksperimentalnoj biologii I mediciny 2008; 145(6): 659-662

14. Kayukov IG, Beresneva ON, Parastaeva MM i d . Vliyanie vozrasta i sokrashcheniya massy dejstvuyushchih nefronov na sostoyanie miokarda i koronarnogo rusla u molodyh krys. Regionarnoe krovoobrashchenie imikrocirkulyaciya 2015; 14(4): 66-73

15. Maquigussa E, Paterno JC, de Oliveira Pokorny Gh et al. Klotho and PPAR gamma activation mediate the renoprotective effect of losartan in the 5/6 nephrectomy model. Front Physiol 2018; 9: 1033. Doi: 10.3389/fphys.2018.01033

16. Shobeiri N, Adams MA, Holden RM. Vascular calcification in animal models of CKD: A review. Am J Nephrol 2010; 31(6): 471-481. Doi: 10.1159/000299794

17. Claramunt D, Gil-Pefia H, Fuente R et al. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model? Nefrologia 2015; 35(6): 517-522. Doi: 10.1016/j.nefro.2015.08.004

18. Lobov GI, Vasina EYU, Malahova ZL, Vlasov TD. Rol razlichnyh ehndotelialnyh vazodilatatorov v regulyacii tonusa arterij u krys. Ross fiziolzhurn im IMSechenova 2018; 104 (3): 327-337

19. Kang KT Endothelium-derived relaxing factors of small resistance arteries in hypertension. Toxicol Res 2014; 30(3): 141-148. Doi: 10.5487/TR.2014.30.3.141

20. Scotland RS, Madhani M, Chauhan S, Moncada S et al. Investigation of vascular responses in endothelial nitric oxide synthase/cyclooxygenase-1 double-knockout mice: key role for endothelium-derived hyperpolarizing factor in the regulation of blood pressure in vivo. Circulation 2005; 111(6): 796-803. Doi: 10.1161/01.CIR.0000155238.70797.4E

21. Huang MJ, Wei RB, Zhao J et al. Albuminuria and endothelial dysfunction in patients with non-diabetic chronic kidney disease. Med Sci Monit 2017; 23: 4447-4453. Doi: 10.12659/MSM.903660

22. Fujii H, Kono K, Nishi S. Characteristics of coronary artery disease in chronic kidney disease. Clin Exp Nephrol 2019; Doi: 10.1007/s10157-019-01718-5

23. Widlansky ME, Gokce N, Keaney JF, Vita JA. The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology 2003; 42(7): 1149-1160 Doi:10.1016/S0735-1097(03)00994-X

24. Smiljic S. The clinical significance of endocardial endothelial dysfunction. Medicina 2017; 53(5): 295-302. Doi: 10.1016/j.medici.2017.08.003

25. Martens CR, Kuczmarski JM, Lennon-Edwards S, Edwards DG. Impaired L-arginine uptake but not arginase contributes to endothelial dysfunction in rats with chronic kidney disease. J Cardiovasc Pharmacol 2014; 63(1): 40-48. Doi: 10.1097/FJC.0000000000000022

26. Li T, Gua C, Wu B, Chen Y Increased circulating trimethyl-amine N-oxide contributes to endothelial dysfunction in a rat model of chronic kidney disease. Biochem Biophys Res Commun 2018; 495(2): 2071-2077. Doi: 10.1016/j.bbrc.2017.12.069

27. Zanetti M, Gortan Cappellari G, Barbetta D et al. Omega 3 polyunsaturated fatty acids improve endothelial dysfunction in chronic renal failure: role of eNOS activation and of oxidative stress. Nutrients 2017; 9(8): E895. Doi: 10.3390/nu9080895

28. Panina IY Rumyantsev ASH, Menshutina МА, Achkasova VV, i dr. Osobennosti funktsij ehndoteliya pri khronicheskoj bolezni pochek. Obzor literatury i sobstvennye dannye. Nefrologiya 2007; 11(4): 28-46

29. Zoccali C, Mallamaci F, Tripepi G. Traditional and emerging cardiovascular risk factors in end-stage renal disease. Kidney Int 2003; 85: S105-S110. Doi: 10.1046/j.1523-1755.63.s85.25.x

30. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-376

31. Boulanger CM, Morrison KJ, Vanhoutte PM . Mediation by M3-muscarinic receptors of both endothelium-dependent contraction and relaxation to acetylcholine in the aorta of the spontaneously hypertensive rat. Br J Pharmacol 1994; 112: 519-524

32. Toda N, Ayajiki K, Okamura . Neurogenic and endothelial nitric oxide regulates blood circulation in lingual and other oral tissues. J Cardiovasc Pharmacol 2012; 60: 100-108. Doi: 10.1097/FJC.0b013e318252452a

33. Michel T, Vanhoutte PM. Cellular signalling and NO production. PflugersArch 2010; 459: 807-816

34. Vanhoutte PM , Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol2017; 219: 22-96. https://Doi.org/10.1111/apha.12646

35. Beresneva ON, Parastayeva MM, Ivanova GT i dr. Otsenka kardioprotektivnogo deystviya malobelkovoy soyevoy diyety i urovnya neorganicheskikh anionov v syvorotke krovi u spontanno-giperten-zivnykh krys s nefrektomiyey. Nefrologiya 2007; 11 (3): 70-76

36. Puzserova A, Bernatova I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res 2016; 65 (Suppl. 3): S309-S342

37. Yamamizu K, Shinozaki K, Ayajiki K, et al. Oral administration of both tetrahydrobiopterin and L-arginine prevents endothelial dysfunctionin rats with chronic renal failure. J Cardiovasc Pharmacol 2007; 49(3): 131-139. Doi: 10.1097/FJC.0b013e31802f9923

38. Xu YC, Leung SW, Leung GP, Man RY Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) activated K(+) channels. Br J Pharmacol 2015; 172: 3003-3014. Doi: 10.1111/bph.13108

39. Jang HJ, Ridgeway SD, Kim JA. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. Am J Physiol Endocrinol Metab 2013; 305: E1444-E1451

40. Feletou M, Vanhoutt PM. . Endothelium-dependent hyperpolarization: no longer an f-word! J Cardiovasc Pharmacol 2013; 61: 91-92. Doi: 10.1097/FJC.0b013e31828197bc

41. Shimokawa H. Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart 2014; J 35: 3180-3193. Doi: 10.1093/eurheartj/ehu427

42. Busse R, Edwards M, Feletou M et al. EDHF: Bringing the concepts together. Trends PharmacolSci 2002; 23: 374-380

43. Eichler I, Wibawa J, Grgic I et al. Selective blockade of endothelial Ca2+-activated small- and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation. Br J Pharmacol 2003; 138: 594-601 https://Doi.org/10.1038/sj.bjp.0705075

44. Edwards G, Dora KA, Gardener MJ, et al. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269-272 https://Doi.org/10.1038/24388

45. Griffith TM, Chaytor AT, Taylo HJ, et al. cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electronic conduction via gap junctions. Proc Natl Acad Sci USA 2002; 99: 6392-6397 https://Doi.org/10.1073/pnas.092089799

46. Kohler R, Eichler I, Schonfelder H et al. Impaired EDHF-mediated vasodilation and function of endothelial Ca-activated K channels in uremic rats. Kidney Int 2005; 67(6): 2280-2287. Doi: 10.1111/j.1523-1755.2005.00331.x

47. Li T, Gua C, Wu B, Chen Y Increased circulating trimethyl-amine N-oxide contributes to endothelial dysfunction in a rat model of chronic kidney disease. Biochem Biophys Res Commun 2018; 495(2): 2071-2077. Doi: 10.1016/j.bbrc.2017.12.069


Review

For citations:


Ivanova G.T., Lobov G.I., Beresneva O.N., Parastaeva M.M. Changes in the reactivity of vessels of rats with an experimental decrease in the mass of functioning nephrons. Nephrology (Saint-Petersburg). 2019;23(4):88-95. (In Russ.) https://doi.org/10.24884/1561-6274-2019-23-4-88-95

Views: 1074


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)