Эпигенетические механизмы нефропротекции при диабетической нефропатии: в фокусе сиртуин-1
https://doi.org/10.36485/1561-6274-2021-25-6-9-15
Аннотация
Многочисленными исследованиями показана критическая роль деацетилазы сиртуина-1 (SIRT1) в защите почечных клеток от эндогенных и экзогенных стрессов. Защитная роль SIRT1 была установлена как в подоцитах, так и в клетках почечных канальцев при многих заболеваниях почек, включая диабетическую нефропатию (ДН). Показано также, что SIRT1 оказывает нефропротективные эффекты при ДН отчасти через деацетилирование факторов транскрипции, участвующих в патогенезе заболевания, таких как p53, FOXO, RelA / p65NF-KB, STAT3 и PGC1a / PPARy. Недавно установлено, что специфическая для подоцитов избыточная экспрессия SIRT1 ослабляет протеинурию и повреждение почек на экспериментальной модели ДН, что свидетельствует о возможности использования SIRT1 в качестве потенциальной мишени для лечения заболеваний почек. Кроме того, агонисты SIRT1, такие как ресвера-трол и BF175, уменьшали диабетическое повреждение почек на нескольких экспериментальных моделях животных. Также удалось показать, что пуэрарин, китайское растительное лекарственное средство, активирует SIRT1, обеспечивая нефропротекцию на мышиной модели ДН. Помимо агонистов SIRT1, нефропротективный эффект оказывают и ингибиторы бромодомена, в частности MS417. Эти результаты свидетельствуют о том, что агонисты SIRT1 и ингибиторы бромодомена могут быть новыми потенциальными терапевтическими средствами, замедляющими прогрессирование ДН.
Об авторах
К. А. АйтбаевКазахстан
Айтбаев Кубаныч Авенович - доктор медицинских наук, проф. руководитель отдела патологической физиологии. Член правления Общества специалистов по хронической болезни почек Кыргызстана.
720040, Бишкек, ул. Т. Молдо, д. 3, Тел.: (312) 66-25-13
И. Т. Муркамилов
Кыргызстан
Муркамилов Илхом Торобекович - кандидат медицинских наук, Исполняющий обязанности доцента кафедры факультетской терапии Кыргызской ГМА; старший преподаватель кафедры терапии №2 медицинского факультета Кыргызско-Российского славянского университета. Председатель правления Общества специалистов по хронической болезни почек Кыргызстана.
720020, Бишкек, ул. Ахунбаева, д. 92. Тел.: (312) 62-09-91
В. В. Фомин
Россия
Фомин Виктор Викторович - доктор медицинских наук профессор, Чл.-кор. РАН, Заведующий кафедрой факультетской терапии №1 Института клинической медицины имени Н.В. Склифосовского, проректор по клинической работе и дополнительному профессиональному образованию, ФГАОУ ВО Первый МГМУ имени И.М. Сеченова (Сеченовский Университет).
119146, Москва, ул. Большая Пироговская, д. 6. Тел.: 8 (499) 248-62-22
Ж. А. Муркамилова
Кыргызстан
Муркамилова Жамила Абдилалимовна - заочный аспирант, Кафедра терапии №2 медицинского факультета.
720000, Кыргызстан, Бишкек, ул. Киевская, д. 44. Тел.: (+996) 552435009
Ф. А. Юсупов
Кыргызстан
Проф. Юсупов Фуркат Абдулахатович - доктор медицинских наук, заведующий кафедрой неврологии, психиатрии и нейрохирургии медицинского факультета Ошского ГУ, Член правления Общества специалистов по хронической болезни почек Кыргызстана, главный невролог Южного региона Кыргызстана.
714000, Ош, ул. Ленина, д. 331. Тел.: (+996) 557202071
Список литературы
1. Moynihan KA, Grimm AA, Plueger MM et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2:105-117. https://doi.org/10.1016/j.cmet.2005.07.001
2. Rodgers JT, Lerin C, Haas W et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434:113-118. https://doi.org/10.1038/nature03354
3. Salminen A, Kaarniranta K. SIRT1: regulation of longevity via autophagy. Cell Signal 2009; 21:1356-1360. https://doi.org/10.1016/j.cellsig.2009.02.014
4. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 2011; 1813:1269-1278. https://doi.org/10.1016/j.bbamcr.2010.09.019
5. Luo J, Nikolaev AX Imai S et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107:137-148. https://doi.org/10.1016/S0092-8674(01)00524-4
6. Hasegawa K, Wakino S, Yoshioka K et al. Kidney-specific overexpression of SIRT1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 2010; 285:13045-13056. https://doi.org/10.1074/jbc.M109.067728
7. He W, Wang X Zhang MZ et al. SIRT1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010; 120:1056-1068. https://doi.org/10.1172/JCI41563
8. Kume S, Uzu T, Horiike K et al. Calorie restriction enhances cell adaptation to hypoxia through SIRT1- dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010; 120:10431055. https://doi.org/10.1172/JCI41376
9. Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci 2011; 124:833-838. https://doi.org/10.1242/jcs.081067
10. Vaziri H, Dessain SK, Ng Eaton E et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-159. https://doi.org/10.1016/S0092-8674(01)00527-X
11. Jang SY, Kim SX Bae YS. p53 deacetylation by SIRT1 decreases during protein kinase CKII downregulation-mediated cellular senescence. FEBS Lett 2011; 585:3360-3366. https://doi.org/10.1016/j.febslet.2011.09.027
12. Milner J, Allison SJ. SIRT1, p53 and mitotic chromosomes. Cell Cycle 2011; 10:3049. https://doi.org/10.4161/cc.10.18.16994
13. Shah ZH, Ahmed SU, Ford JR et al. A deacetylasedefi-cient SIRT1 variant opposes full-length SIRT1 in regulating tumor suppressor p53 and governs expression of cancer-related genes. Mol Cell Biol 2012; 32:704-716. https://doi.org/10.1128/MCB.06448-11
14. Brunet A, Sweeney LB, Sturgill JF et al. Stressdependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011-2015. https://doi.org/10.1126/science.1094637
15. Motta MC, Divecha N, Lemieux M et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551-563. https://doi.org/10.1016/S0092-8674(04)00126-6
16. Chuang PX Yu Q, Fang W et al. Advanced glycation end-products induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney Int 2007; 72:965-976. https://doi.org/10.1038/sj.ki.5002456
17. Chuang PX Dai X Liu R et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS ONE 2011; 6:e23566. https://doi.org/10.1371/journal.pone.0023566
18. Bernier M, Paul RK, Martin-Montalvo A et al. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J Biol Chem 2011; 286:19270-19279. https://doi.org/10.1074/jbc.M110.200311
19. Nie X Erion DM, Yuan Z et al. STAT3 inhibition of glu-coneogenesis is downregulated by SIRT1. Nat Cell Biol 2009; 11:492-500. https://doi.org/10.1038/ncb1857
20. Sestito R, Madonna S, Scarponi C et al. STAT3-dependent effects of IL-22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation. FASEB J 2011; 25:916-927. https://doi.org/10.1096/fj.10-172288
21. Schenk S, Mccurdy CE, Philp A et al. SIRT1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest 2011; 121:4281-4288. https://doi.org/10.1172/JCI58554
22. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NFkappaB action regulated by reversible acetylation. Science 2001; 293:1653-1657. https://doi.org/10.1126/science.1062374
23. Greene WC, Chen LF. Regulation of NF-kappaB action by reversible acetylation. Novartis FoundSymp 2004; 259:208-217; discussion 218-225. https://doi.org/10.1002/0470862637.ch15
24. Yang XD, Tajkhorshid E, Chen LF. Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol Cell Biol 2010; 30:2170-2180. https://doi.org/10.1128/MCB.01343-09
25. Geng H, Harvey CT, Pittsenbarger J et al. HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem 2011; 286:38095-38102. https://doi.org/10.1074/jbc.M111.257055
26. Lim JH, Lee YM, Chun YS et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 2010; 38:864-878. https://doi.org/10.1016/j.molcel.2010.05.023
27. Chen R, Dioum EM, Hogg RT et al. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J Biol Chem 2011; 286:13869-13878. https://doi.org/10.1074/jbc.M110.175414
28. Usrds I. Annual Data Report: Atlas of End-Stage-Renal-Disease in the United States. 2011
29. Kitada M, Takeda A, Nagai T et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011b; 2011:908185. https://doi.org/10.1155/2011/908185
30. Kitada M, Kume S, Imaizumi N, Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of MnSOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 2011a; 60:634-643. https://doi.org/10.2337/db10-0386
31. Kim MY, Lim JH, Youn HH et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 2013; 56:204-217. https://doi.org/10.1007/s00125-012-2747-2
32. Hasegawa K, Wakino S, Simic P et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 2013; 19:14961504. https://doi.org/10.1038/nm.3363
33. Liu R, Zhong X Li X et al. Role of transcription factor acetylation in diabetic kidney disease. Diabetes 2014; 63:2440-2453. https://doi.org/10.2337/db13-1810
34. Chuang PX Xu J, Dai Y et al. In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells. Am J Pathol 2014;184:1940-1956. https://doi.org/10.1016/j.ajpath.2014.03.016
35. Lo CS, Shi Y Chenier I et al. Heterogeneous nuclear ribo-nucleoprotein f stimulates sirtuin-1 gene expression and attenuates nephropathy progression in diabetic mice. Diabetes 2017; 66:1964-1978. https://doi.org/10.2337/db16-1588
36. Hou S, Zhang T, Li Y et al. Glycyrrhizic acid prevents diabetic nephropathy by activating AMPK/SIRT1/PGC-1alpha signaling in db/db mice. J Diabetes Res 2017; 2017:2865912. https://doi.org/10.1155/2017/2865912
37. Li X, Cai W, Lee K et al. Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Sci Rep 2017; 7:14603. https://doi.org/10.1038/s41598-017-17925-7
38. Du YG, Zhang KN, Gao ZL et al. Tangshen formula improves inflammation in renal tissue of diabetic nephropathy through SIRT1/NF-kappaB pathway. Exp TherMed2018; 15:2156-2164. https://doi.org/10.3892/etm.2017.5621
39. Hong Q, Zhang L, Das B et al. Increased podocyte Sir-tuin1 function attenuates diabetic kidney injury. Kidney Int 2018; 93:1330-1343. https://doi.org/10.1016Zj.kint.2017.12.008
40. Maeda S, Koya D, Araki SI et al. Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes. Clin Exp Nephrol 2011; 15:381-390. https://doi.org/10.1007/s10157-011-0418-0
41. Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 2012; 61:23-29. https://doi.org/10.2337/db11-0555
42. Kitada M, OguraX Monno I, Koya D. Regulating autophagy as a therapeutic target for diabetic nephropathy. Curr Diab Rep 2017; 17:53. https://doi.org/10.1007/s11892-017-0879-y
43. Wen D, Huang X, Zhang M et al. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS ONE 2013; 8:e82336. https://doi.org/10.1371/journal.pone.0082336
44. Fan H, Yang HC, You L et al. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/ reperfusion-induced acute kidney injury. Kidney Int 2013; 83:404413. https://doi.org/10.1038/ki.2012.394
45. Nakatani X Inagi R. Epigenetic regulation through SIRT1 in podocytes. Curr Hypertens Rev 2016; 12:89-94. https://doi.org/10.2174/1573402112666160302102515
46. Hao CM, Haase VH. Sirtuins and their relevance to the kidney. J Am Soc Nephrol 2010; 21:1620-1627. https://doi.org/10.1681/ASN.2010010046
47. Morigi M, Perico L, Benigni A. Sirtuins in renal health and disease. J Am Soc Nephrol 2018; 29:1799-1809. https://doi.org/10.1681/ASN.2017111218
48. Berthier CC, Zhang H, Schin M et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 2009; 58:469-477. https://doi.org/10.2337/db08-1328
49. Schmid H, Boucherot A, Yasuda Y et al. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006; 55:2993-3003. https://doi.org/10.2337/db06-0477
50. Niranjan T, Bielesz B, Gruenwald A et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14:290-298. https://doi.org/10.1038/nm1731
51. Tikoo K, Tripathi DN, Kabra DG et al. Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS Lett 2007; 581:1071-1078. https://doi.org/10.1016/j.febslet.2007.02.006
52. Brezniceanu ML, Liu F, Wei CC et al. Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 2007; 71:912-923. https://doi.org/10.1038/sj.ki.5002188
53. Tran D, Bergholz J, Zhang H et al. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell2014; 13:669-678. https://doi.org/10.1111/acel.12219
54. Xiong S, Salazar G, Patrushev N et al. Peroxisome proliferator-activated receptor gamma coactivator1alpha is a central negative regulator of vascular senescence. Arterioscler Thromb Vasc Biol 2013; 33:988-998. https://doi.org/10.1161/ATVBAHA.112.301019
55. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol 2014; 24:464-471. https://doi.org/10.1016/j.tcb.2014.04.002
56. Yuan X Huang S, Wang W et al. Activation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 2012; 82:771-789. https://doi.org/10.1038/ki.2012.188
57. Lv J, Jiang S, Yang Z et al. PGC-1alpha sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. https://doi.org/10.1016/j.arr.2018.03.004
58. Chen J, Xavier S, Moskowitz-Kassai E et al. Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am J Pathol 2012; 180:973-983. https://doi.org/10.1016/j.ajpath.2011.11.033
59. Portilla D. Apoptosis, fibrosis and senescence. Nephron Clin Pract 2014; 127:65-69. https://doi.org/10.1159/000363717
60. Clements ME, Chaber CJ, Ledbetter SR, Zuk A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE2013; 8:e70464. https://doi.org/10.1371/journal.pone.0070464
61. Chuang PX Cai W, Li X et al. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am J Physiol Renal Physiol 2017; 313:F621-628. https://doi.org/10.1152/ajpre-nal.00255.2017
62. Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 2010; 177:1065-1071. https://doi.org/10.2353/ajpath.2010.090923
63. Huang KP, Chen C, Hao J et al. AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-beta1 expression in male rat glomerular mesangial cells. Endocrinology 2015; 156:268-279. https://doi.org/10.1210/en.2014-1381
64. Beher D, Wu J, Cumine S et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 2009; 74:619-624. https://doi.org/10.1111/j.1747-0285.2009.00901.x
65. Pacholec M, Bleasdale JE, Chrunyk B et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010; 285:8340-8351. https://doi.org/10.1074/jbc.M109.088682
66. Rogacka D, Audzeyenka I, Rychlowski M et al. Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochim Biophys Acta 2018; 1864:115-125. https://doi.org/10.1016/j.bbadis.2017.10.014
67. Sanchez R, Meslamani J, Zhou MM. The bromodo-main: from epigenome reader to druggable target. Biochim Biophys Acta 2014; 1839:676-685. https://doi.org/10.1016/j.bbagrm.2014.03.011
68. Huang B, Yang XD, Zhou MM et al. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 2009;29:1375-1387. https://doi.org/10.1128/MCB.01365-08
Рецензия
Для цитирования:
Айтбаев К.А., Муркамилов И.Т., Фомин В.В., Муркамилова Ж.А., Юсупов Ф.А. Эпигенетические механизмы нефропротекции при диабетической нефропатии: в фокусе сиртуин-1. Нефрология. 2021;25(6):9-15. https://doi.org/10.36485/1561-6274-2021-25-6-9-15
For citation:
Aitbaev K.A., Murkamilov I.T., Fomin V.V., Murkamilova Zh.A., Yusupov F.A. Epigenetic mechanisms of nephroprotection in diabetic nephropathy: focus is on sirtuin-1. Nephrology (Saint-Petersburg). 2021;25(6):9-15. (In Russ.) https://doi.org/10.36485/1561-6274-2021-25-6-9-15