Preview

Нефрология

Расширенный поиск

БИОМАРКЕРЫ ОСТРОГО ПОСТКОНТРАСТНОГО ПОВРЕЖДЕНИЯ ПОЧЕК У ПАЦИЕНТОВ, ПЕРЕНЕСШИХ ЧРЕСКОЖНЫЕ КОРОНАРНЫЕ ВМЕШАТЕЛЬСТВА

https://doi.org/10.36485/1561-6274-2022-26-2-34-45

Аннотация

Высокая распространенность ишемической болезни сердца требует увеличения интервенционных вмешательств с использованием рентгеноконтрастных веществ (РКВ). Одним из возможных последствий является развитие острого повреждения почек (ОПП). Ранее формирование ОПП после процедуры с введением контраста всегда расценивалось как контраст-индуцированное. Учитывая сложность патогенеза ОПП, в настоящее время рекомендуется использовать более всеобъемлющий термин «постконтрастное ОПП» (ПК-ОПП). Основным критерием диагностики считается увеличение концентрации сывороточного креатинина не менее чем на 0,3 мг/дл (26,5 мкмоль/л) или не менее чем в 1,5–1,9 раза от исходного уровня в течение 48–72 ч после процедуры. ПК-ОПП является частым осложнением после внутрисосудистого введения йодсодержащих контрастных веществ и ассоциировано с увеличением длительности пребывания в стационаре и неблагоприятным отдаленным прогнозом, включая нежелательные сердечно-сосудистые события, а также трансформацию в хроническую болезнь почек. ПК-ОПП развивается у 5–20 % госпитализированных пациентов, подвергшихся чрескожным коронарным вмешательствам. Аналоги йодсодержащих РКВ пока не разработаны, поэтому полностью избежать ПК-ОПП не представляется возможным. Основной диагностический критерий не является биомаркером по сути, а отражает тяжесть уже состоявшегося повреждения. В связи с этим актуальным остается вопрос о поиске таких биомаркеров, которые способствовали бы не только ранней диагностике, но и профилактике данного осложнения. В настоящее время идентифицированы новые и более ранние сывороточные и мочевые биомаркеры для диагностики повреждения почек, которые могут быть выявлены до момента повышения уровня креатинина в сыворотке крови. В обзоре представлена информация о наиболее актуальных биомаркерах ПК-ОПП.

Об авторах

Ю. В. Лаврищева
Национальный медицинский исследовательский центр имени В. А. Алмазова
Россия

Лаврищева Юлия Владимировна, канд. мед. наук, научно-исследовательская лаборатория патогенеза и терапии артериальной гипертензии, старший научный сотрудник.

197341, Санкт-Петербург, ул. Аккуратова, д. 2
Тел.: 8(812)7023749



А. О. Конради
Национальный медицинский исследовательский центр имени В. А. Алмазова
Россия

Конради Александра Олеговна, чл.-кор. РАН, проф., д-р мед. наук, заместитель генерального директора по научной работе

197341, Санкт-Петербург, ул. Аккуратова, д. 2
Тел.: 8(812)7023733



А. А. Яковенко
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова
Россия

Яковенко Александр Александрович, доц., канд. мед. наук, кафедра нефрологии и диализа ФПО

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54
Тел.: 8(952)3625464



А. Ш. Румянцев
Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова; Санкт-Петербургский государственный университет
Россия

Румянцев Александр Шаликович, проф., д-р мед. наук, кафедра пропедевтики внутренних болезней Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова; кафедра факультетской терапии Санкт-Петербургского государственного университета

197022, Санкт-Петербург, ул. Л. Толстого, д. 17, корп. 54
Тел.: 8(911)7808421



Список литературы

1. van der Molen AJ, Reimer P, Dekkers IA et al. Post-contrast acute kidney injury – Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 2018;28(7):2845–2855. doi:10.1007/s00330-017-5246-5

2. Tehrani S, Laing C, Yellon DM, et al. Contrastinduced acute kidney injury following PCI. Eur J Clin Invest 2013;43:483–490. doi:10.1111/eci.12061

3. Lameire NH, Levin A, Kellum JA et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International 2021;100(3):516–526. doi:10.1016/j.kint.2021.06.028

4. Santiago G, Byungsoo K, Selcuk A. Contrast-Induced Nephropathy and Risk of Acute Kidney Injury and Mortality After Cardiac Operations. The Annals of Thoracic Surgery 2012;94(3):772–776. doi:10.1016/S0002-9343(97)00150-2

5. Uchino S, Kellum JA, Bellomo R et al. Acute renal failure in critically ill patients: a multinational, multicentre study. JAMA 2005;294(7):813–818. doi:10.1001/jama.294.7.813

6. McCullough PA, Shaw AD, Haase M et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol 2013;182:13–29. doi:10.1159/000349963

7. McMahon GM, Waikar SS. Biomarkers in nephrology: Core Curriculum 2013. Am J Kidney Dis 2013;62(1):165–178. doi:10.1053/j.ajkd.2012.12.022

8. D’Amore C, Nuzzo S, Briguori C. Biomarkers of ContrastInduced Nephropathy: Which Ones are Clinically Important? Intervent Cardiol Clin 2020;9:335–344. doi:10.1016/j.iccl.2020.02.004

9. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol 2008;3(1):288–296. doi:10.2215/CJN.02600607

10. Hossain MA, Costanzo E, Cosentino J et al. Contrastinduced nephropathy: Pathophysiology, risk factors, and prevention. Saudi J Kidney Dis Transpl 2018;29(1):1–9. doi:10.4103/1319-2442.225199

11. Mehran R, Aymong ED, Nikolsky E et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 2004;44(7):1393–1399. doi:10.1016/j.jacc.2004.06.068

12. Ferguson MA, Vaidya VS, Bonventre JV. Biomarkers of nephrotoxic acute kidney injury. Toxicology 2008;245:182–193. doi:10.1016/j.tox.2007.12.024

13. Levey AS, Gansevoort RT, Coresh J et al. Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis 2020;75(1):84–104. doi:10.1053/j.ajkd.2019.06.009

14. Levey AS, Becker C, Inker LA. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults: A Systematic Review. JAMA 2015;313(8):837–846. doi:10.1001/jama.2015.0602

15. Wang C, Ma S, Deng B, Lu J et al. The predictive value of the product of contrast medium volume and urinary albumin/ creatinine ratio in contrast-induced acute kidney injury. Ren Fail 2017;39(1):555–560. doi:10.1080/0886022X.2017.1349673

16. Weyer K, Nielsen R, Petersen SV et al. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med 2013;54(1):159–165. doi:10.2967/jnumed.112.110528

17. Ghys LF, Meyer E, Paepe D et al. Analytical validation of a human particle-enhanced nephelometric assay for cystatin C measurement in feline serum and urine. Vet Clin Pathol 2014;43(2):226–234. doi:10.1111/vcp.12144

18. Obiols J, Bargnoux AS, Kuster N et al. Validation of a new standardized cystatin C turbidimetric assay: evaluation of the three novel CKD-EPI equations in hypertensive patients. Clin Biochem 2013;46(15):1542–1547. doi:10.1016/j.clinbiochem.2013.05.056

19. Shlipak MG, Mattes MD, Peralta CA. Update on cystatin C: incorporation into clinical practice. Am J Kidney Dis 2013;62(3):595–603. doi:10.1053/j.ajkd.2013.03.027

20. Schaeffner E. Determining the Glomerular Filtration RateAn Overview. J Ren Nutr 2017;27(6):375–380. doi:10.1053/j.jrn.2017.07.005

21. Gaygısız Ü, Aydoğdu M, Badoğlu M et al. Can admission serum cystatin C level be an early marker subclinical acute kidney injury in critical care patients? Scand J Clin Lab Invest 2016;76(2):143–150. doi:10.3109/00365513.2015.1126854

22. Shams E, Mayrovitz HN. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus 2021;13(5):e14842. doi:10.7759/cureus.14842

23. He Y, Deng Y, Zhuang K et al. Predictive value of cystatin C and neutrophil gelatinase-associated lipocalin in contrast-induced nephropathy: A meta-analysis. PLoS One 2020;15(4):e0230934. doi:10.1371/journal.pone.0230934

24. Coppolino G, Comi N, Bolignano D et al. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) Predicts Renal Function Decline in Patients With Glomerular Diseases. Front Cell Dev Biol 2020;8:336. doi:10.3389/fcell.2020.00336

25. de Bhailís ÁM, Chrysochou C, Kalra PA. Inflammation and Oxidative Damage in Ischaemic Renal Disease. Antioxidants (Basel) 2021;10(6):845. doi:10.3390/antiox10060845

26. Paragas N, Qiu A, Hollmen M et al. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta 2012;1823(9):1451–1458. doi:10.1016/j.bbamcr.2012.06.014

27. Briguori C, Visconti G, Rivera NV et al. Cystatin C and contrast-induced acute kidney injury. Circulation 2010;121(19):2117–2122. doi:10.1161/CIRCULATIONAHA.109.919639

28. Zhang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 2011;58(3):356–365. doi:10.1053/j.ajkd.2011.02.389

29. Berggard I, Bearn AG. Isolation and properties of a low molecular weight β2-globulin occurring in human biological fluids. J Biol Chem 1968;243(15):4095–4103

30. Andreucci M, Faga T, Riccio E et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis 2016;9:205–221. doi:10.2147/IJNRD.S105124

31. Norden AGW, Lapsley M, Lee PJ et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 2001;60(5):1885–1892. doi:10.1046/j.1523–1755.2001.00016.x

32. El-Frargy MS, El-Refaey AM, Eid R, Hussien MA. Serum cystatin-C and BETA 2-microglobulin as accurate markers in the early diagnosis of kidney injury in neonates: a single center study. Saudi J Kidney Dis Transpl 2015;26(4):712–717. doi:10.4103/1319-2442.160151

33. D'Amore C, Nuzzo S, Briguori C. Biomarkers of ContrastInduced Nephropathy: Which Ones are Clinically Important? Interv Cardiol Clin 2020;9(3):335–344. doi:10.1016/j.iccl.2020.02.004

34. Li S, Zheng Z, Tang X. Preprocedure and postprocedure predictive values of serum b2-microglobulin for contrast-induced nephropathy in patients undergoing coronary computed tomography angiography: a comparison with creatinine-based parameters and cystatin C. J Comput Assist Tomogr 2015;3996:969–974. doi:10.1097/RCT.0000000000000294

35. Adiyanti SS, Loho T. Acute Kidney Injury (AKI) biomarker. Acta Med Indones 2012;44(3):246–255

36. Norden AGW, Burling KA, Zeni L, Unwin RJ. A New Estimate of the Glomerular Sieving Coefficient for Retinol-Binding Protein 4 Suggests It Is Not Freely Filtered. Kidney Int Rep 2019;4(7):1017–1018. doi: 10.1016/j.ekir.2019.04.017

37. Bernard AM, Vyskocil AA, Mahieu P, Lauwerys RR. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem 1987;33(6):775–779

38. Ho J, Tangri N, Komenda P et al. Urinary, Plasma, and Serum Biomarkers' Utility for Predicting Acute Kidney Injury Associated With Cardiac Surgery in Adults: A Meta-analysis. Am J Kidney Dis 2015;66(6):993–1005. doi:10.1053/j.ajkd.2015.06.018

39. Ren L, Ji J, Fang Y et al. Assessment of urinary N-acetyl-β-glucosaminidase as an early marker of contrastinduced nephropathy. J Int Med Res 2011;39(2):647–653. doi:10.1177/147323001103900234

40. Ali BH, Al Moundhri MS, Tag Eldin M et al. The ameliorative effect of cysteine prodrug L-2-oxothiazolidine-4-carboxylic acid on cisplatin-induced nephrotoxicity in rats. Fundam Clin Pharmacol 2007;21(5):547–553. doi:10.1111/j.1472-8206.2007.00495.x

41. Xu Z, Yang J, Yu J et al. Effects of BSO, GSH, Vit-C 30 and DMPS on the nephrotoxicity of mercury. Toxicol Ind Health 2007;23(7):403–410. doi:10.1177/0748233707077431

42. Li J, Li QX, Xie XF et al. Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol 2009;620(1-3):97–104. doi:10.1016/j.ejphar.2009.08.021

43. Oktem F, Ozguner F, Sulak O et al. Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Mol Cell Biochem 2005;277(1-2):109–115. doi:10.1007/s11010-005-5426-5

44. Miao S, Xue ZK, Zhang YR et al. Comparison of Different Hydration Strategies in Patients with Very Low-Risk Profiles of Contrast-Induced Nephropathy. Med Sci Monit 2021;27:e929115. doi:10.12659/MSM.929115

45. Cai L, Rubin J, Han W et al. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol 2010;5(12):2229–2235. doi:10.2215/CJN.00980110

46. Xu SY, Pauksen K, Venge P. Serum measurements of human neutrophil lipocalin (HNL) discriminate between acute bacterial and viral infections. Scand J Clin Lab Invest 1995;55(2):125–131. doi:10.3109/00365519509089604

47. Horwitz LD, Sherman NA, Kong Y et al. Lipophilic siderophores of Mycobacterium tuberculosis prevent cardiac reperfusion injury. Proc Natl Acad Sci USA 1998;95(9):5263–5268. doi:10.1073/pnas.95.9.5263

48. Schmidt-Ott KM, Mori K, Kalandadze A et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 2006; 15(4):442–449. doi:10.1097/01.mnh.0000232886.81142.58

49. Zhou F, Luo Q, Wang L et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg 2016;49(3):746–755. doi:10.1093/ejcts/ezv199

50. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem 2014;51(Pt 3):335–351. doi:10.1177/0004563214521795

51. Siew ED, Ware LB, Gebretsadik T et al. Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol 2009;20(8):1823–1846. doi:10.1681/ASN.2008070673

52. Delanaye P, Rozet E, Krzesinski JM, Cavalier E. Urinary NGAL measurement: biological variation and ratio to creatinine. Clin Chim Acta 2011;412(3–4):390. doi:10.1016/j.cca.2010.10.011

53. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biobiomarker and much more. Nephrol Dial Transplant 2009;24(11):3265–3268. doi:10.1093/ndt/gfp010

54. Li Q, Huang Y, Shang W et al. The Predictive Value of Urinary Kidney Injury Molecular 1 for the Diagnosis of Contrast-Induced Acute Kidney Injury after Cardiac Catheterization: A Meta-Analysis. J Interv Cardiol 2020;2020:4982987. doi:10.1155/2020/4982987

55. Han WK, Bailly V, Abichandani R et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002;62(1):237–244. doi:10.1046/j.1523-1755.2002.00433.x

56. Akdeniz D, Celik HT, Kazanci F et al. Is Kidney Injury Molecule 1 a Valuable Tool for the Early Diagnosis of Contrast-Induced Nephropathy? J Investig Med 2015;63(8):930–934. doi:10.1097/JIM.0000000000000243

57. Liao B, Nian W, Xi A, Zheng M. Evaluation of a Diagnostic Test of Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Urine KIM-1 in Contrast-Induced Nephropathy (CIN). Med Sci Monit 2019;25:565–570. doi:10.12659/MSM.912569

58. Li W, Yu Y, He H et al. Urinary Kidney injury molecule-1 as an early indicator to predict contrast induced acute Kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed Rep 2015;3(4):509–512. doi:10.3892/br.2015.449

59. Wybraniec MT, Chudek J, Bozentowicz-Wikarek M et al. Prediction of contrast-induced acute kidney injury by early postprocedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J Interv Cardiol 2017;30(5):465–472. doi:10.1111/joic.12404

60. Altmann C, Andres-Hernando A, McMahan RH et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 2012;302(4):F421–F432. doi:10.1152/ajprenal.00559.2010

61. Parikh CR, Jani A, Melnikov VY et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004;43(3):405–414. doi:10.1053/j.ajkd.2003.10.040

62. Liu Y, Guo W, Zhang J et al. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 2013;62(6):1058–1067. doi:10.1053/j.ajkd.2013.05.014

63. Roberts LM, Buford TW. Lipopolysaccharide binding protein is associated with CVD risk in older adults. Aging Clin Exp Res 2021;33(6):1651–1658. doi:10.1007/s40520-020-01684-z

64. Fujita D, Takahashi M, Doi K et al. Response of urinary liver-type fatty acid-binding protein to contrast media administration has a potential to predict one year renal outcome in patients with ischemic heart disease. Heart Vessels 2015;30(3):296–303. doi:10.1007/s00380-014-0484-9

65. Kamijo A, Sugaya T, Hikawa A et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am J Pathol 2004;165(4): 1243–1255. doi:10.1016/S0002-9440(10)63384-6

66. Negishi K, Noiri E, Doi K et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 2009;174(4): 1154–1159. doi:10.2353/ajpath.2009.080644

67. Katagiri D, Doi K, Honda K et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann Thorac Surg 2012;93(2):577–583. doi:10.1016/j.athoracsur.2011.10.048

68. Nozue T, Michishita I, Mizuguchi I. Predictive value of serum cystatin C, β2-microglobulin, and urinary liver-type fatty acid-binding protein on the development of contrast-induced nephropathy. Cardiovasc Interv Ther 2010;25(2):85–90. doi:10.1007/s12928-010-0014-3

69. Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv Med Sci 2009;54(2):221–224. doi:10.2478/v10039-009-0036-1

70. Manabe K, Kamihata H, Motohiro M et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrastinduced acute kidney injury. Eur J Clin Invest 2012;42(5):557–563. doi:10.1111/j.1365-2362.2011.02620.x

71. Qin C, Li M, Bai T et al. Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury. Exp Cell Res 2018;371(1):255–261. doi:10.1016/j.yexcr.2018.08.019

72. Sato W, Sato Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br J Pharmacol 2014;171(4):879–887. doi:10.1111/bph.12418

73. Malyszko J, Bachorzewska-Gajewska H, KocZorawska E. Midkine: a novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Biomed Res Int 2015;2015:879509. doi:10.1155/2015/879509

74. Hayashi H, Sato W, Kosugi T et al. Efficacy of urinary midkine as a biomarker in patients with acute kidney injury. Clin Exp Nephrol 2017;21(4):597–607. doi:10.1007/s10157-016-1318-0

75. Schunk SJ, Zarbock A, Meersch M et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet 2019;394(10197):488–496. doi:10.1016/S0140-6736(19)30769-X

76. Clerico A, Galli C, Fortunato A et al. Neutrophil gelatinaseassociated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med 2012;50(9):1505–1517. doi:10.1515/cclm2011-0814

77. Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2018;243(2):129–136. doi:10.1177/1535370217749472


Рецензия

Для цитирования:


Лаврищева Ю.В., Конради А.О., Яковенко А.А., Румянцев А.Ш. БИОМАРКЕРЫ ОСТРОГО ПОСТКОНТРАСТНОГО ПОВРЕЖДЕНИЯ ПОЧЕК У ПАЦИЕНТОВ, ПЕРЕНЕСШИХ ЧРЕСКОЖНЫЕ КОРОНАРНЫЕ ВМЕШАТЕЛЬСТВА. Нефрология. 2022;26(2):34-45. https://doi.org/10.36485/1561-6274-2022-26-2-34-45

For citation:


Lavrishcheva Y.V., Konradi A.O., Jakovenko A.A., Rumyantsev A.S. BIOMARKERS OF ACUTE POST-CONTRAST KIDNEY INJURY IN PATIENTS UNDERGOING PERCUTANEOUS CORONARY INTERVENTIONS. Nephrology (Saint-Petersburg). 2022;26(2):34-45. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-2-34-45

Просмотров: 455


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)