Preview

Nephrology (Saint-Petersburg)

Advanced search

BIOMARKERS OF ACUTE POST-CONTRAST KIDNEY INJURY IN PATIENTS UNDERGOING PERCUTANEOUS CORONARY INTERVENTIONS

https://doi.org/10.36485/1561-6274-2022-26-2-34-45

Abstract

The high prevalence of coronary heart disease requires an increase in interventional interventions using X-ray contrast agents. One of the possible consequences is the development of acute kidney injury (AKI). Previously, the formation of AKI after the procedure with the introduction of contrast was always regarded as contrast-induced. Given the complexity of the pathogenesis of AKI, it is currently recommended to use a more comprehensive term "post-contrast AKI" (). The manifestations of PCAKI include an absolute (greater than or equal to 0.3 or more or equal to 0.5 mg / dL) or relative (greater than or equal to 25 %) increases in serum creatinine (sCr) compared with baseline values, occurring 48–72 hours after intravascular administration of RKV. PC-AKI is a common complication following intravascular administration of iodine-containing contrast media and is associated with prolonged hospital stay and poor long-term prognosis, including unwanted cardiovascular events, and complete loss of renal function. PC-AKI occurs in 5-20% of hospitalized patients undergoing percutaneous coronary interventions. Unfortunately, there are currently no analogues of iodine-containing RKV, and therefore the question of finding optimal PC-AKI biomarkers for the purpose of early diagnosis and prevention of this formidable complication remains relevant. The diagnosis of PC-AKI is based on an increase in serum creatinine, which is a late biomarker of kidney damage. New and earlier serum and urinary biomarkers for the diagnosis of kidney damage have now been identified that can be detected before serum creatinine levels rise. This article provides information on the most relevant and modern biomarkers of PC-AKI.

About the Authors

Y. V. Lavrishcheva
Almazov National Medical Research Centre
Russian Federation

Yulia V. Lavrischeva, Senior Researcher, MD, PhD, research laboratory of pathogenesis and therapy of arterial hypertension, senior researcher

197341, St-Petersburg, str. Akkuratova 2
Phone: 8(812)7023749



A. O. Konradi
Almazov National Medical Research Centre
Russian Federation

Professor, Konradi Alexandra O., Corresponding Member RAS, MD, PhD, DMedSci, deputy general director for research

197341, Russia, St-Petersburg, str. Akkuratova 2
Phone: 8(812)7023733



A. A. Jakovenko
Pavlov University
Russian Federation

Jakovenko Alexandr A., MD, PhD, Department of Nephrology and Dialysis of the Faculty of Postgraduate Education Propudeutics of Internal Diseases, associate professor

197022, St-Petersburg, L. Tolstoy st., 17, build 54
Phone: 8(952)3625464



A. S. Rumyantsev
Pavlov University; Saint-Petersburg state University
Russian Federation

Rumyantsev Alexandr Sh., Professor, MD, PhD, DMedSci, First Pavlov St.-Petersburg State Medical University, Department of Propudeutics of Internal Diseases, professor; 5 Department of Faculty therapy, Saint-Petersburg state University

197022, St-Petersburg, L. Tolstoy st., 17, build 54
Phone: 8(911)7808421



References

1. van der Molen AJ, Reimer P, Dekkers IA et al. Post-contrast acute kidney injury – Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 2018;28(7):2845–2855. doi:10.1007/s00330-017-5246-5

2. Tehrani S, Laing C, Yellon DM, et al. Contrastinduced acute kidney injury following PCI. Eur J Clin Invest 2013;43:483–490. doi:10.1111/eci.12061

3. Lameire NH, Levin A, Kellum JA et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International 2021;100(3):516–526. doi:10.1016/j.kint.2021.06.028

4. Santiago G, Byungsoo K, Selcuk A. Contrast-Induced Nephropathy and Risk of Acute Kidney Injury and Mortality After Cardiac Operations. The Annals of Thoracic Surgery 2012;94(3):772–776. doi:10.1016/S0002-9343(97)00150-2

5. Uchino S, Kellum JA, Bellomo R et al. Acute renal failure in critically ill patients: a multinational, multicentre study. JAMA 2005;294(7):813–818. doi:10.1001/jama.294.7.813

6. McCullough PA, Shaw AD, Haase M et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol 2013;182:13–29. doi:10.1159/000349963

7. McMahon GM, Waikar SS. Biomarkers in nephrology: Core Curriculum 2013. Am J Kidney Dis 2013;62(1):165–178. doi:10.1053/j.ajkd.2012.12.022

8. D’Amore C, Nuzzo S, Briguori C. Biomarkers of ContrastInduced Nephropathy: Which Ones are Clinically Important? Intervent Cardiol Clin 2020;9:335–344. doi:10.1016/j.iccl.2020.02.004

9. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol 2008;3(1):288–296. doi:10.2215/CJN.02600607

10. Hossain MA, Costanzo E, Cosentino J et al. Contrastinduced nephropathy: Pathophysiology, risk factors, and prevention. Saudi J Kidney Dis Transpl 2018;29(1):1–9. doi:10.4103/1319-2442.225199

11. Mehran R, Aymong ED, Nikolsky E et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 2004;44(7):1393–1399. doi:10.1016/j.jacc.2004.06.068

12. Ferguson MA, Vaidya VS, Bonventre JV. Biomarkers of nephrotoxic acute kidney injury. Toxicology 2008;245:182–193. doi:10.1016/j.tox.2007.12.024

13. Levey AS, Gansevoort RT, Coresh J et al. Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis 2020;75(1):84–104. doi:10.1053/j.ajkd.2019.06.009

14. Levey AS, Becker C, Inker LA. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults: A Systematic Review. JAMA 2015;313(8):837–846. doi:10.1001/jama.2015.0602

15. Wang C, Ma S, Deng B, Lu J et al. The predictive value of the product of contrast medium volume and urinary albumin/ creatinine ratio in contrast-induced acute kidney injury. Ren Fail 2017;39(1):555–560. doi:10.1080/0886022X.2017.1349673

16. Weyer K, Nielsen R, Petersen SV et al. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med 2013;54(1):159–165. doi:10.2967/jnumed.112.110528

17. Ghys LF, Meyer E, Paepe D et al. Analytical validation of a human particle-enhanced nephelometric assay for cystatin C measurement in feline serum and urine. Vet Clin Pathol 2014;43(2):226–234. doi:10.1111/vcp.12144

18. Obiols J, Bargnoux AS, Kuster N et al. Validation of a new standardized cystatin C turbidimetric assay: evaluation of the three novel CKD-EPI equations in hypertensive patients. Clin Biochem 2013;46(15):1542–1547. doi:10.1016/j.clinbiochem.2013.05.056

19. Shlipak MG, Mattes MD, Peralta CA. Update on cystatin C: incorporation into clinical practice. Am J Kidney Dis 2013;62(3):595–603. doi:10.1053/j.ajkd.2013.03.027

20. Schaeffner E. Determining the Glomerular Filtration RateAn Overview. J Ren Nutr 2017;27(6):375–380. doi:10.1053/j.jrn.2017.07.005

21. Gaygısız Ü, Aydoğdu M, Badoğlu M et al. Can admission serum cystatin C level be an early marker subclinical acute kidney injury in critical care patients? Scand J Clin Lab Invest 2016;76(2):143–150. doi:10.3109/00365513.2015.1126854

22. Shams E, Mayrovitz HN. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus 2021;13(5):e14842. doi:10.7759/cureus.14842

23. He Y, Deng Y, Zhuang K et al. Predictive value of cystatin C and neutrophil gelatinase-associated lipocalin in contrast-induced nephropathy: A meta-analysis. PLoS One 2020;15(4):e0230934. doi:10.1371/journal.pone.0230934

24. Coppolino G, Comi N, Bolignano D et al. Urinary Neutrophil Gelatinase-Associated Lipocalin (NGAL) Predicts Renal Function Decline in Patients With Glomerular Diseases. Front Cell Dev Biol 2020;8:336. doi:10.3389/fcell.2020.00336

25. de Bhailís ÁM, Chrysochou C, Kalra PA. Inflammation and Oxidative Damage in Ischaemic Renal Disease. Antioxidants (Basel) 2021;10(6):845. doi:10.3390/antiox10060845

26. Paragas N, Qiu A, Hollmen M et al. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta 2012;1823(9):1451–1458. doi:10.1016/j.bbamcr.2012.06.014

27. Briguori C, Visconti G, Rivera NV et al. Cystatin C and contrast-induced acute kidney injury. Circulation 2010;121(19):2117–2122. doi:10.1161/CIRCULATIONAHA.109.919639

28. Zhang Z, Lu B, Sheng X, Jin N. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 2011;58(3):356–365. doi:10.1053/j.ajkd.2011.02.389

29. Berggard I, Bearn AG. Isolation and properties of a low molecular weight β2-globulin occurring in human biological fluids. J Biol Chem 1968;243(15):4095–4103

30. Andreucci M, Faga T, Riccio E et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis 2016;9:205–221. doi:10.2147/IJNRD.S105124

31. Norden AGW, Lapsley M, Lee PJ et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 2001;60(5):1885–1892. doi:10.1046/j.1523–1755.2001.00016.x

32. El-Frargy MS, El-Refaey AM, Eid R, Hussien MA. Serum cystatin-C and BETA 2-microglobulin as accurate markers in the early diagnosis of kidney injury in neonates: a single center study. Saudi J Kidney Dis Transpl 2015;26(4):712–717. doi:10.4103/1319-2442.160151

33. D'Amore C, Nuzzo S, Briguori C. Biomarkers of ContrastInduced Nephropathy: Which Ones are Clinically Important? Interv Cardiol Clin 2020;9(3):335–344. doi:10.1016/j.iccl.2020.02.004

34. Li S, Zheng Z, Tang X. Preprocedure and postprocedure predictive values of serum b2-microglobulin for contrast-induced nephropathy in patients undergoing coronary computed tomography angiography: a comparison with creatinine-based parameters and cystatin C. J Comput Assist Tomogr 2015;3996:969–974. doi:10.1097/RCT.0000000000000294

35. Adiyanti SS, Loho T. Acute Kidney Injury (AKI) biomarker. Acta Med Indones 2012;44(3):246–255

36. Norden AGW, Burling KA, Zeni L, Unwin RJ. A New Estimate of the Glomerular Sieving Coefficient for Retinol-Binding Protein 4 Suggests It Is Not Freely Filtered. Kidney Int Rep 2019;4(7):1017–1018. doi: 10.1016/j.ekir.2019.04.017

37. Bernard AM, Vyskocil AA, Mahieu P, Lauwerys RR. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem 1987;33(6):775–779

38. Ho J, Tangri N, Komenda P et al. Urinary, Plasma, and Serum Biomarkers' Utility for Predicting Acute Kidney Injury Associated With Cardiac Surgery in Adults: A Meta-analysis. Am J Kidney Dis 2015;66(6):993–1005. doi:10.1053/j.ajkd.2015.06.018

39. Ren L, Ji J, Fang Y et al. Assessment of urinary N-acetyl-β-glucosaminidase as an early marker of contrastinduced nephropathy. J Int Med Res 2011;39(2):647–653. doi:10.1177/147323001103900234

40. Ali BH, Al Moundhri MS, Tag Eldin M et al. The ameliorative effect of cysteine prodrug L-2-oxothiazolidine-4-carboxylic acid on cisplatin-induced nephrotoxicity in rats. Fundam Clin Pharmacol 2007;21(5):547–553. doi:10.1111/j.1472-8206.2007.00495.x

41. Xu Z, Yang J, Yu J et al. Effects of BSO, GSH, Vit-C 30 and DMPS on the nephrotoxicity of mercury. Toxicol Ind Health 2007;23(7):403–410. doi:10.1177/0748233707077431

42. Li J, Li QX, Xie XF et al. Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol 2009;620(1-3):97–104. doi:10.1016/j.ejphar.2009.08.021

43. Oktem F, Ozguner F, Sulak O et al. Lithium-induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Mol Cell Biochem 2005;277(1-2):109–115. doi:10.1007/s11010-005-5426-5

44. Miao S, Xue ZK, Zhang YR et al. Comparison of Different Hydration Strategies in Patients with Very Low-Risk Profiles of Contrast-Induced Nephropathy. Med Sci Monit 2021;27:e929115. doi:10.12659/MSM.929115

45. Cai L, Rubin J, Han W et al. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol 2010;5(12):2229–2235. doi:10.2215/CJN.00980110

46. Xu SY, Pauksen K, Venge P. Serum measurements of human neutrophil lipocalin (HNL) discriminate between acute bacterial and viral infections. Scand J Clin Lab Invest 1995;55(2):125–131. doi:10.3109/00365519509089604

47. Horwitz LD, Sherman NA, Kong Y et al. Lipophilic siderophores of Mycobacterium tuberculosis prevent cardiac reperfusion injury. Proc Natl Acad Sci USA 1998;95(9):5263–5268. doi:10.1073/pnas.95.9.5263

48. Schmidt-Ott KM, Mori K, Kalandadze A et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 2006; 15(4):442–449. doi:10.1097/01.mnh.0000232886.81142.58

49. Zhou F, Luo Q, Wang L et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur J Cardiothorac Surg 2016;49(3):746–755. doi:10.1093/ejcts/ezv199

50. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem 2014;51(Pt 3):335–351. doi:10.1177/0004563214521795

51. Siew ED, Ware LB, Gebretsadik T et al. Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol 2009;20(8):1823–1846. doi:10.1681/ASN.2008070673

52. Delanaye P, Rozet E, Krzesinski JM, Cavalier E. Urinary NGAL measurement: biological variation and ratio to creatinine. Clin Chim Acta 2011;412(3–4):390. doi:10.1016/j.cca.2010.10.011

53. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biobiomarker and much more. Nephrol Dial Transplant 2009;24(11):3265–3268. doi:10.1093/ndt/gfp010

54. Li Q, Huang Y, Shang W et al. The Predictive Value of Urinary Kidney Injury Molecular 1 for the Diagnosis of Contrast-Induced Acute Kidney Injury after Cardiac Catheterization: A Meta-Analysis. J Interv Cardiol 2020;2020:4982987. doi:10.1155/2020/4982987

55. Han WK, Bailly V, Abichandani R et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002;62(1):237–244. doi:10.1046/j.1523-1755.2002.00433.x

56. Akdeniz D, Celik HT, Kazanci F et al. Is Kidney Injury Molecule 1 a Valuable Tool for the Early Diagnosis of Contrast-Induced Nephropathy? J Investig Med 2015;63(8):930–934. doi:10.1097/JIM.0000000000000243

57. Liao B, Nian W, Xi A, Zheng M. Evaluation of a Diagnostic Test of Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Urine KIM-1 in Contrast-Induced Nephropathy (CIN). Med Sci Monit 2019;25:565–570. doi:10.12659/MSM.912569

58. Li W, Yu Y, He H et al. Urinary Kidney injury molecule-1 as an early indicator to predict contrast induced acute Kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed Rep 2015;3(4):509–512. doi:10.3892/br.2015.449

59. Wybraniec MT, Chudek J, Bozentowicz-Wikarek M et al. Prediction of contrast-induced acute kidney injury by early postprocedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J Interv Cardiol 2017;30(5):465–472. doi:10.1111/joic.12404

60. Altmann C, Andres-Hernando A, McMahan RH et al. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 2012;302(4):F421–F432. doi:10.1152/ajprenal.00559.2010

61. Parikh CR, Jani A, Melnikov VY et al. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004;43(3):405–414. doi:10.1053/j.ajkd.2003.10.040

62. Liu Y, Guo W, Zhang J et al. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 2013;62(6):1058–1067. doi:10.1053/j.ajkd.2013.05.014

63. Roberts LM, Buford TW. Lipopolysaccharide binding protein is associated with CVD risk in older adults. Aging Clin Exp Res 2021;33(6):1651–1658. doi:10.1007/s40520-020-01684-z

64. Fujita D, Takahashi M, Doi K et al. Response of urinary liver-type fatty acid-binding protein to contrast media administration has a potential to predict one year renal outcome in patients with ischemic heart disease. Heart Vessels 2015;30(3):296–303. doi:10.1007/s00380-014-0484-9

65. Kamijo A, Sugaya T, Hikawa A et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am J Pathol 2004;165(4): 1243–1255. doi:10.1016/S0002-9440(10)63384-6

66. Negishi K, Noiri E, Doi K et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 2009;174(4): 1154–1159. doi:10.2353/ajpath.2009.080644

67. Katagiri D, Doi K, Honda K et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann Thorac Surg 2012;93(2):577–583. doi:10.1016/j.athoracsur.2011.10.048

68. Nozue T, Michishita I, Mizuguchi I. Predictive value of serum cystatin C, β2-microglobulin, and urinary liver-type fatty acid-binding protein on the development of contrast-induced nephropathy. Cardiovasc Interv Ther 2010;25(2):85–90. doi:10.1007/s12928-010-0014-3

69. Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv Med Sci 2009;54(2):221–224. doi:10.2478/v10039-009-0036-1

70. Manabe K, Kamihata H, Motohiro M et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrastinduced acute kidney injury. Eur J Clin Invest 2012;42(5):557–563. doi:10.1111/j.1365-2362.2011.02620.x

71. Qin C, Li M, Bai T et al. Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury. Exp Cell Res 2018;371(1):255–261. doi:10.1016/j.yexcr.2018.08.019

72. Sato W, Sato Y. Midkine in nephrogenesis, hypertension and kidney diseases. Br J Pharmacol 2014;171(4):879–887. doi:10.1111/bph.12418

73. Malyszko J, Bachorzewska-Gajewska H, KocZorawska E. Midkine: a novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Biomed Res Int 2015;2015:879509. doi:10.1155/2015/879509

74. Hayashi H, Sato W, Kosugi T et al. Efficacy of urinary midkine as a biomarker in patients with acute kidney injury. Clin Exp Nephrol 2017;21(4):597–607. doi:10.1007/s10157-016-1318-0

75. Schunk SJ, Zarbock A, Meersch M et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet 2019;394(10197):488–496. doi:10.1016/S0140-6736(19)30769-X

76. Clerico A, Galli C, Fortunato A et al. Neutrophil gelatinaseassociated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med 2012;50(9):1505–1517. doi:10.1515/cclm2011-0814

77. Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2018;243(2):129–136. doi:10.1177/1535370217749472


Review

For citations:


Lavrishcheva Y.V., Konradi A.O., Jakovenko A.A., Rumyantsev A.S. BIOMARKERS OF ACUTE POST-CONTRAST KIDNEY INJURY IN PATIENTS UNDERGOING PERCUTANEOUS CORONARY INTERVENTIONS. Nephrology (Saint-Petersburg). 2022;26(2):34-45. (In Russ.) https://doi.org/10.36485/1561-6274-2022-26-2-34-45

Views: 454


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)