Preview

Nephrology (Saint-Petersburg)

Advanced search

Expression miRNA-21 in renal tissue and urine in rats with unilateral ureteral obstruction

Abstract

AIM: to examine the effect of diets with different contents of sodium chloride on blood pressure (BP), remodeling of the myocardium and the parameters of sodium homeostasis in spontaneously hypertensive rats (SHR). MATERIAL AND METHODS. We studied two groups of animals. First group received during 2 months diet containing 0.34% NaCl, second - high salt diet (8.0 %) NaCl. The blood pressure (BP) was recorded at the end of the observation period. In serum and in daily urine sodium concentration was determined. The study of morphological changes in the myocardium was performed on the light-optical level. RESULTS. The level of BP did not differ between groups, myocardial mass index, left ventricular mass index, sodium concentration in the urine, daily urine volume and sodium excretion were higher in animals fed a diet containing 8% NaCl. In rats from this group increase of cardiomyocytes fibers hypertrophy severity, mild perivascular fibrosis and moderate hypertrophy of smooth muscle cells of the vessel walls were revealed. CONCLUSION. Results of the study suggest that the high sodium chloride diet in SHR rats leads to a unique profile of myocardial remodeling, which is not determined exclusively by the increase of blood pressure.

About the Authors

I. G. Kayukov
First Pavlov St.-Petersburg State Medical University
Russian Federation


G. T. Ivanova
Institute of Physiology named after I. P. Pavlov Russian Academy of Sciences
Russian Federation


M. I. Zaraiskii
First Pavlov St.-Petersburg State Medical University
Russian Federation


O. N. Beresneva
First Pavlov St.-Petersburg State Medical University
Russian Federation


M. M. Parastaeva
First Pavlov St.-Petersburg State Medical University
Russian Federation


A. G. Kucher
First Pavlov St.-Petersburg State Medical University
Russian Federation


A. V. Smirnov
First Pavlov St.-Petersburg State Medical
Russian Federation


References

1. Kataoka M, Wang DZ. Non-Coding RNAs Including miRNAs and lncRNAs in Cardiovascular Biology and Disease. Cells 2014; 3(3): 883-898

2. Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 2014; 63(21): 2177-2187

3. Gharipour M, Sadeghi M. Pivotal role of microRNA-33 in metabolic syndrome: A systematic review. ARYA Atheroscler 2013;

4. Смирнов АВ, Кучер АГ, Добронравов ВАидр. Диетарный соевый протеин замедляет развитие интерстициального почечного фиброза у крыс с односторонней обструкцией мочеточника: введение в нутритивную эпигеномику. Нефрология 2012; 16(4):75-83

5. Adams BD, Kasinski AL, Slack FJ. Aberrant Regulation and Function of MicroRNAs in Cancer. Curr Biol 2014; 24(16): R762-R776

6. Qingqing W, Qing-Sheng M, Zheng D. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2013; 65(7): 602-614

7. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39: D152-157

8. Landgraf P, Rusu M, Sheridan R et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-1414

9. Sun X Koo S, White N et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004; 32(22): e188

10. Chandrasekaran K, Karolina DS, Sepramaniam S et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int 2012; 81(7): 617-627

11. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011; 8(5): 706-713

12. Lan HY Diverse Roles of TGF-ß/Smads in Renal Fibrosis and Inflammation. Int J Biol Sci 2011; 7(7): 1056-1067

13. Duffield JS, Grafals M, Portilla D. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models. Drug Discov Today Dis Models 2013; 10(3):e127-e135

14. Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 2012; 21(4): 410-416

15. Zarjou A, Yang S, Abraham E et al. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol 2011; 301(4): F793-F801

16. Береснева ОН, Парастаева ММ, Иванова ГТ и др. Влияние метформина на формирование тубулоинтерстициального фиброза у крыс. Нефрология 2014; 19(6): 45-48 [Beresneva ON, Parastaeva MM, Ivanova GT i dr. Vl^nie metformina na formirovanie tubulointersticial’nogo fibroza u krys. Nefrologijа 2014; 19(6): 45-48]

17. Chung AC, Lan HY MicroRNAs in renal fibrosis. Front Physiol 2015; 6:50. doi: 10.3389/fphys.2015.00050

18. Cмирнов АВ, Карунная АВ, Зарайский МИ и др. Экспрессия микроРНК-21 в моче у пациентов с нефропатиями. Нефрология 2014; 18(6): 59-63

19. D’Alessandra Y, Devanna P, Limana F et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010; 31(22): 2765-2773

20. Shi B, Guo Y Wang J, Gao W. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord 2010; 10:11

21. Godwin JG, Ge X, Stephan K et al. Identification of a microRNA signature of renal ischemia-reperfusion injury. Proc Natl Acad Sci USA 2010; 107: 14339-14344

22. Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984

23. Liu G, Friggeri A, Yang Y et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207: 1589-1597

24. Zhong X, Chung AC, Chen HY et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 2011; 22: 1668-1681

25. Bottinger EP. TGF-beta in renal injury and disease. Semin Nephrol 2007; 27: 309-320

26. Wang W, Koka V, Lan HY Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 2005;10(1):48-56

27. Смирнов АВ, Иванова ГТ, Береснева ОН и др. Экспериментальная модель интерстициального почечного фиброза. Нефрология 2009; 13(4): 70-74 [Smirnov AV, Ivanova GT, Beresneva ON i dr. Yeksperimental’najа model’ intersticial’nogo pochechnogo fibroza. Nefrologijа 2009; 13(4): 70-74]

28. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008;454:56-61


Review

For citations:


Kayukov I.G., Ivanova G.T., Zaraiskii M.I., Beresneva O.N., Parastaeva M.M., Kucher A.G., Smirnov A.V. Expression miRNA-21 in renal tissue and urine in rats with unilateral ureteral obstruction. Nephrology (Saint-Petersburg). 2016;20(5):84-89. (In Russ.)

Views: 484


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)