URINE PROTEINS AND FIBROTIC LESIONS OF RENAL COMPARTMENTS IN IMMUNE GLOMERULOPATHIES
https://doi.org/10.24884/1561-6274-2017-21-6-54-59
Abstract
The quantification of specific urinary proteins in high-grade proteinuria can be of importance for the evaluation of mophrological lesions, response to therapy and prognosis.
The aim of our study was to analyze whether the urinary excretion of high and low molecular proteins associated with the degree of glomerular, tubulointerstitial and vascular fibrosis.
Patients and methods. The study included 97 patients with biopsy proven primary immune glomerulopathies: membranous nephropathy (n =22), minimal change disease (n=13), focal segmental glomerulosclerosis (n =30), IgA nephropathy (n=32). Measurements of total protein, immunoglobulin G (IgG), transferrin (Trf), α1-microglobulin (α1-МG), β2-microglobulin (β2-MG) were performed by nephelometric method in morning urine samples. The results were standardized for urine creatinine (Cr) concentration.
Results. There were a correlation between proteinuria and specific proteins: β2-MG (r=0.24, р=0.025), α1-МG (r=0.38, р<0.001), Trf (r=0.78, р<0.001), IgG (r=0.67, р<0.001), as well as the positive correlation between high and low molecular proteins. Low molecular proteins (β2-МG, α1-МG) correlated with global glomerular sclerosis (r=0.28, р=0.010 and r=0.21, р=0.049 respectively) while levels of proteinuria and high molecular weight proteins did not. Urinary excretion β2-microglobulin was also significantly higher in patients with moderate-to-severe tubulointerstitial and vascular fibrotic lesions.
Conclusion. β2-microglobulin was suggested to be candidate integrative biomarker of renal fibrosis in primary glomerulopathies.
About the Authors
E. O. BogdanovaRussian Federation
Bogdanova Evdokia - Laboratory of Biochemical Homeostasis.
197022, St. Petersburg, L. Tolstoy st., 17, build. 54, (812) 338-69-01
O. V. Galkina
Russian Federation
Olga V. Galkina - PhD, Laboratory of Biochemical Homeostasis, head.
197022, St. Petersburg, L. Tolstoy st., 17, build. 54, (812) 338-69-01I. M. Zubina
Russian Federation
Irina M. Zubina – PhD, Laboratory of Biochemical Homeostasis.
197022, St. Petersburg, L. Tolstoy st., 17, build. 54, (812) 338-69-01V. A. Dobronravov
Russian Federation
Vladimir A. Dobronravov - MD, PhD, DSci, Prof., Vice Director.
197022, St. Petersburg, L. Tolstoy st., 17, build. 54, (812) 338-69-01
References
1. SantucciL, BruschiM, CandianoGetal. Urine Proteome Biomarkers in Kidney Diseases. Limits, Perspectives, and First Focus on Normal Urine. Biomark Insights 2016; 11: 41–48
2. Weissinger EM, Wittke S, Kaiser T et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. KidneyInt 2004; 65(6): 2426–2434
3. Пролетов ЯЮ, Саганова ЕС, Галкина ОВ и др. Роль некоторых биомаркеров в оценке характера хронического повреждения почек у пациентов с первичными гломерулопатиями. Нефрология 2013;1:60 – 69 [ProletovYAYU, SaganovaES, GalkinaOVidr. Rol’ nekotoryhbiomarkerovvocenkeharakterahronicheskogopovrezhdeniyapochekupacientovspervichnymiglomerulopatiyami. Nefrologiya 2013; 1: 60 – 69]
4. Fiseha T, Tamir Z. Urinary markers of Tubular Injury in Early Diabetic Nephropathy. Int J Nephrol 2016; 2016: 4647685. doi: 10.1155/2016/4647685
5. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150(9): 604–612
6. Du Buf-Vereijken PW, Wetzels JF. Treatment-related changes in urinary excretion of high and low molecular weight proteins in patients with idiopathic membranous nephropathy and renal insufficiency. Nephrol Dial Transplant 2006; 21(2): 389–396 doi 10.1093/ndt/gfi219
7. Shin JR, Kim SM, Yoo JS et al. Urinary excretion of β2microglobulin as a prognostic marker in immunoglobulin A nephropathy. Nephropathy Korean J Intern Med 2014; 29(3): 334-340. doi: 10.3904/kjim.2014.29.3.334
8. Branten AJW, Du Buf-Vereijken PW, Klasen IS et al. Urinary excretion of beta2-microglobulin and IgG predict prognosis in idiopathic membranous nephropathy: a validation study. J Am Soc Nephrol 2005; 16(1): 169–174 doi: 10.1681/ASN.2004040287
9. Gluhovschi C, Gluhovschi G, Christos C et al. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Frontiers in Medicine 2017; 4 (73): doi.org/10.3389/fmed.2017.000
10. Christensen EI, Birn H, Storm T et al. Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 2012; 27: 223–236:doi:10.1152/physiol.00022.2012
11. Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2016; 89: 58–67; doi:10.1016/j.kint.2015.11.007
12. Pallet N, Chauvet S, Chasse JF et al. Urinary Retinol Binding Protein Is a Marker of the Extent of Interstitial Kidney Fibrosis. PLoS One 2014; Jan 8;9(1):e84708. doi: 10.1371/journal.pone.0084708
13. Li L, Dong M, Wang XG. The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chin Med J (Engl) 2016;129(4): 448-455
14. Haymann JP, Levraud JP, Bouet S et al. Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol 2000; 11: 632–639
15. Dobrinskikh E, Okamura K, Kopp JB et al. Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol 2014; 306: 941–951. doi:10.1152/ajprenal.00532.2013
16. Kobayashi N, Suzuki Y, Tsuge T et al. FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. American Journal of Physiology 2002; 282(2): 358-365. doi: 10.1152/ajprenal.0164.2001
17. Gan H, Feng S, Wu H et al. Neonatal Fc receptor stimulation induces ubiquitin c-terminal hydrolase-1 overexpression in podocytes through activation of p38 mitogen-activated protein kinase. Hum Pathol 2012; 43: 1482–1490. doi:10.1016/j.humpath.2011.10.025
18. Kang S-W, Natarajan R, Shahed A et al. Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen α5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes. J Am Soc Nephrol 2003; 14:3178–3187. doi:10.1097/01.ASN.0000099702.16315.DE
19. Koshikawa M, Mukoyama M, Mori K et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J Am Soc Nephrol 2005; 16: 2690–2701. doi:10.1681/ASN.200412108
20. Kavvadas P, Weis L, Abed AB et al. Renin inhibition reverses renal disease in transgenic mice by shifting the balance between profibrotic and antifibrotic agentsnovelty and significance. Hypertension 2013; 61: 901–907. doi:10.1161/HYPERTENSIONAHA.111.00639
21. Kato Y, Mori K, Kasahara M et al. Natriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogen-activated protein kinase inhibition. SciRep 2017; 7:46624. doi:10.1038/srep4662
Review
For citations:
Bogdanova E.O., Galkina O.V., Zubina I.M., Dobronravov V.A. URINE PROTEINS AND FIBROTIC LESIONS OF RENAL COMPARTMENTS IN IMMUNE GLOMERULOPATHIES. Nephrology (Saint-Petersburg). 2017;21(6):54-59. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-6-54-59