Preview

Нефрология

Расширенный поиск

ФИЗИОЛОГИЯ И ПАТОФИЗИОЛОГИЯ ТРАНСПОРТА ФОСФАТА

https://doi.org/10.24884/1561-6274-2007-11-3-12-20

Об авторах

В. М. Ермоленко
Российская медицинская академия последипломного образования, Москва
Россия
кафедра нефрологии


Н. А. Михайлова
Российская медицинская академия последипломного образования, Москва
Россия
кафедра нефрологии


С. Батэрдэнэ
Российская медицинская академия последипломного образования, Москва
Россия
кафедра нефрологии


Список литературы

1. Hernando N, Foster I, Biber J, Murer H. Molecular characteristics of phosphate transporters and their regulation. Exp Nephrol 2000; 8: 366-375

2. Forster I, Kohler K, Biber J et al. Modulation of renal type IIa Na+/Pi cotransporter kinetics by the arginine modifier phenylglyoxal. J Membr Biol 2002; 15: 18785-18796

3. Forster I, Loo D, Eskandari S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal II Na+ -Pi cotransporters. Am J Physiol 1999; 276: F644-F649

4. Murer H, Lotscher M, Kaissing B et al. Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 1996; 49: 1769-73

5. Murer H, Hernando N, Forster I, Biber J. Molecular aspects in regulation renal phosphate reabsorption: the type IIa sodium/inorganic phosphate co-transporter as the key player. Curr Opin Nephrol Hypertens 2001; 10: 555-561

6. Beck L, Karaplis A, Amizuka N et al. Targeted inactivation of Npt 2 in mice leads to severe renal phosphate wasting, hypercalciuria and skeletal abnormalities. Proc Natl Acad Sci USA 1998; 95: 5372-5377

7. Segawa H, Kaneko I, Itho M et al. Regulation of renal type IIc Na/Pi cotransporter by dietary phosphate. J Am Soc Nephrol 2002; 13 [Suppl]: 279

8. Segawa H, Kaneko I, Takahashi A et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem 2002; 277: 19665-19672

9. Levi M, Kempson S, Lotscher M et al. Molecular regulation of renal phosphate transport. J Membr Biol 1996; 154: 1-9

10. Levi M, Lotscher M, Sorribas V et al. Cellular mechanisms of acute and chronic adaptation of renal Pi transporter to alteration in dietary Pi. Am J Physiol 1994; 267: F900-F908

11. Miyamoto K, Itho M. Transcriptional regulation of the Npt2 gene by dietary phosphate. Kidney Int 2001; 60: 412-425

12. Biber J, Custer M, Magagnin S et al. Renal Na/Pi-cotransporters. Kidney int 1996; 49: 981-985

13. Biber J, Murer H, Forster I. The renal type II Na+/phosphate cotransporter. J Bioenerg Biomembr 1998; 30: 187-194

14. Biber J, Hernando N, Traebert M et al. Parathyroid hormone-mediated regulation of renal phosphate reabsorbtion. Nephrol Dial Tranplant 2000; 29 [Suppl]: 29-30

15. Murer H, Biber J. Control of proximal tubular apical Na/Pi cotransport.Exp Nephrol 1996; 4: 201-204

16. Murer H, Biber J. Traffic and control of proximal tubular sodium phosphate Na/Pi-cotransport. Wien Kein Wochenschr 1997; 109: 441-444

17. Pfister M, Lederer E, Forgo J et al. Parathyroid hormone dependent degradation of type II Na+/Pi cotransporters. J Biol Chem 1997; 272: 20125-20130

18. Pfister M, Ruf I, Stange G et al. Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci USA 1998; 95: 1909-1914

19. Caverzasio J, Rizzoli R, Bonjour J. Sodium-dependent phosphate transport inhibited by parathyroid hormone and cyclic AMP stimulation in an opossum kidney cell line. J Biol Chem 1986; 261: 3233-3237

20. Pollock A, Warnock D, Strewler G. Parathyroid hormone inhibition of Na+ - H+ antiporter activity in a cultured renal cell line. Am J Physiol 1986; 19: F217-F225

21. Nihizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693-698

22. Lederer E, Kuhundmiri S, Weinman E. Role of NHERE-1 in regulation of the activity Na-K-ATPase and sodium phosphate cotransport in epithelial cells. J Am Soc Nephrol 2003; 14: 1711-1719

23. Levi M. Role PDZ domain containing proteins and ERM proteins in regulation of renal function and dysfunction. J Am Soc Nephrol 2003; 14: 1949-1951

24. De Luca H, Schnoes H. Vitamin D recent advances. Annu Rev Biochem 1983; 52: 411-439

25. Duschett J. Renal tubular effects of vitamin D and its metabolism. Adv Exp Med Biol 1977; 81: 29-40

26. Knox F, Ossuald H, Marchand G et al. Phosphate transport along nephron. Am J Physiol 1997; 233: F261-F268

27. Kumar R. Vitamin D metabolism and mechanisms of calcium transport. J Am Soc Nephrol 1990; 1: 30-42

28. Kumar R. Vitamin D and calcium transport. Kidney Int 1991; 40: 1177-1189

29. Omdahl J, Holick M, Suda T et al. Biological activity of 1,25-dihydroxycholecalciferol. Biochemistry 1971; 10: 2935-2940

30. Steele T, Engle J, Tanaka Y et al. Phosphatemic action of 1,25-dihydrohyvitamin D 3 .Am J Physiol1975; 229: 489-495

31. Tanaka Y, De Luca H. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 1973; 154: 566-574

32. Tanaka Y, De Luca H. Role of 1,25-dihydroxyvitamin D 3 in maintaining serum phosphorus and curing rickets. Proc Natl Acad Sci USA 1974; 71: 1040-1044

33. De Luca H, Schnoes H. Metabolism and mechanism of action of vitamin D. Annu Rev Biochem 1976; 45: 631-666

34. Omdahl J, De Luca H. Regulation of vitamin D metabolism and function. Physiol Rev 1973; 53: 327-372

35. Portale A, Halloran B, Murphy M, Morris R. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin by determining its production rate in human. J Clin Investig 1986; 77: 7-12

36. Tenenhouse H, Martel J, Ganthier C et al. Renal expression of the sodium phosphate transporter gene Npt2, is not required for regulation of renal 1α-hydroxylase by phosphate. Endocrynology 2001;142: 112-129

37. Yamashita T, Yoshioka M, Itoh N. Identification of novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 2000; 277: 494-498

38. White K, Cabral J, Davis S et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 2005; 76: 361-367

39. Yamashita T, Konishi M, Miyake A et al. Fibroblast growth factor (FGF-23) inhibits renal phosphate reabsorption by activation of the nitrogen activated protein kinase pathway. J Biol Chem 2002; 277: 28265-28270

40. Shimada T, Muto T, Urakawa I et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and cause hypophosphatemia in vivo. Endocrinology 2002; 143: 3179-3182

41. Liu S, Guo R, Simpson L et al. Regulation of fibroblastic growth factor 23 expression not degradation by PHEX. J Biol Chem 2003; 278: 37419-37426

42. Mirams M, Robinson B, Mason R, Nelson A. Bone as source of FGF-23: regulation by phosphate. Bone 2004; 35: 1192-1199

43. Riminucci M, Collins M, Fedarko N et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Investig 2003; 112: 683-692

44. Sitara D, Razzaque M, Hesse M et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired sceletogenesis and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004; 23: 421-432

45. ADHR Consortium: Autosomal dominant hypophosphatemic rickets/Osteomalacia: clinical characterization of novel renal phosphate wasting disorder. J Clin Endocrinol Metab 1997; 82: 674-681

46. Shimada T, Hasegawa H, Yamazaki Y et al. FGF-23 is potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19: 429-435

47. Jonsson K, Zahraduik R, Larsson T et al. Fibroblast growth factors in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 348: 1656-1663

48. White K, Carn G, Loreuz-Depiereux B et al. Autosomal dominant hypophosphatemic rickets (ADHR) mutation stabilize FGF-23. Kidney Int 2001; 60: 2079-2086

49. Benet-Pages A, Orlic P, Strom T, Lorenz-Depiereux B. An FGF-23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14: 385-390

50. Carpenter T, Ellis B, Insogna K et al. An inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab 2005; 90: 1012-1020

51. Bai K, Miao D, Golzman D, Kazaplis A. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 003; 278:9843-9849

52. Bai K, Miao D, Li J et al. Transgenic mice overexpressed human fibroblast growth factor 23 (R176Q) delineate a рutative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 2004; 145: 5269-5279

53. Larsson T, Marsell R, Schirani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of alpha 1 collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology 2004; 145: 3087-3094

54. Matrin K, Meconkey C, Baldassare J et al. Effect of triamcinolone on parathyroid hormone-stimulated second messenger systems and phosphate transport in opossum kidney cells. Endocrinology 1994; 134: 331-336

55. Murer H, Jurg B. A molecular view on proximal tubular inorganic phosphate (Pi) reabsorption and its regulation. Pflugers Arch 1997; 433: 379-389

56. Saito H, Kusano K, Kinosaki M et al. Human fibroblast growth factor 23 mutants suppress Na+ dependent phosphate cotransport activity and 1 alpha, 25-dihydroxyvitamin D 3 production. J Biol Chem 2003; 278: 2206-2211

57. Hyp Consortium A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The Hyp Consortium Nat Genet 1995; 11: 130-136

58. Miao D, Bai X, Panda D et al. Osteomalacia in hyp mice is associated with abnormal phex expression and with altered bone matrix protein expression and deposition. Endocrinology 2001; 142: 926-939

59. Rowe P, De Zoysa P, Dong R et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 2000; 67: 54-68

60. Zhang M, Wang X, Wang T et al. Dietary phosphorus transcriptionally regulates 25-hydroxyvitamin D-1α-hydroxylase gene expression in the proximal renal tubule. Endocrinology 2002; 143: 587-595

61. Jan De Beur S, Finnegan R, Vassiliadis J et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 2002; 17: 1102-1110

62. Bresler D, Bruder J, Mohnike K et al. Serum MEPE-ASAPM peptides are elevated in X-linked rickets HYP: implications for phosphateuria and rickets.J Endocrinology 2004; 183: R1-R9

63. MiramsM, Robinson B, Mason R, Nelson A. Bone as a source of FGF-23. Regulation by phosphate? Bone 2004; 35: 1192-1199

64. Jan De Beur S, Jain A, Kham M, Fedarco N. Matrix extracellular phosphoglycoprotein (MEPE) fragments circulate in excess in patients with tumor induced osteomalacia (TIO) and X-linked hypophosphatemic rickets (XLH). J Bone Miner Res 2004; 19: F 479

65. Liu S, Brown T, Zhon J et al. Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol 2005; 16: 1645-1653

66. Shimada T, Uracawa I, Yamazaki Y et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter IIa. Biochem Biophys Res Commun 2004; 314: 409-414

67. Jones S, Jomary C. Secreted frizzled related proteins: searching for relationships and pattern. Bio Essays 2002; 24: 811-820

68. Raftner A, Hseih J, Smallwood P et al. A family of secreted proteins contains homology to the cysteine-rich domain. Nature 2001; 412: 86-90

69. Miller J. The Wnts. Genome Biol 3: reviews, 2002; 3001

70. Berndt T, Craig T, Bowe A et al. Secreted frizzled related protein 4 is a prominent tumor derived phosphateuric agent. J Clin Investig 2003; 112: 785-94

71. Collins M, Chebli C, Jones J et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001; 16: 806-813

72. Weinstein L, Shenker A, Gejman P et al. Activating mutations of the stimulatory G-protein in the McCune-Albright syndrome.N Engl J Med 1991; 325: 1688-1695

73. Betro M, Pain R. Hypophosphatemia and hyperphosphatemia in a hospital population. Brit Med J 1972;1: 273-276

74. Soskin S, Levine R. Carbohydrate metabolism. 2nd ed. The Univ. of Chicago Press, Chicago, 1952

75. Jacob H, Amsden T. Acute hemolytic anemia and rigid red cells in hypophosphatemia. New Engl J Med 1971; 285: 1446

76. Craddick P, Yawta Y, Van Santen I. Acquired phagocyte dysfunction: a complication of the hypophosphatemia of parenteral hyperalimentation. New Engl J Med 1974; 290: 1403-1405

77. Knochel J, Bilbrey G, Fuller T et al. The muscle cell in chronic alcoholism. The possible role of phosphate depletion in alcoholic myopathy. Ann NY Acad Sci 1975; 252: 274-277

78. Knochel J, Barcenas C, Cotton J et al. Hypophosphatemia and rhabdomyolysis. J Clin Investig 1978; 62: 1240-44

79. Dalmak S, Erek E, Serdengecti K et al. A case study of adult onset hypophosphatemic osteomalacia with idiopathic Fanconi syndrome. Nephron 1996; 72: 121-122

80. Roth K, Foreman J, Segal S. The Fanconi syndrome and mechanisms of tubular transport dysfunction. Kidney Int 1981; 20: 705-716

81. Parfitt A. The acute effects of mersalyl, chlorothiazide and mannitol on the excretion of calcium and other electrolytes in man. Clin Sci 1969; 36: 267-82

82. Topaz O, Shurman D, Bergman R et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 2004; 36: 579-581

83. Ichikawa S, Lyles K, Econs M. A novel GALNT3 mutation in pseudoautosomal dominant form of tumoral calcinosis: evidence that the disorder is autosomal recessive. J Clin Endocrinol Metab 2005; 90: 2420-2423

84. Larrson T, Yu X, Davis S et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab 2005; 90: 2424-2427

85. Araya K, Fukumoto S, Backenroth R et al. A mutation in FGF23 gene enhances the processing of FGF-23 protein and causes tumoral calcinosis. J Bone Miner Res 2004; 19: 1160

86. Linarelli L, Bobik J, Bobik C. Newborn urinary cyclic AMP and developmental renal responsiveness to parathyroid hormone. Pediatrics 1972; 50: 14-23

87. Medalle R, Waterhouse C. A magnesium deficient patient presenting with hypocalcemia and hyperphosphatemia. Ann Intern Med 1973; 79: 76-79

88. Cook P, Nassim R, Collins J. The effects of thyrotoxicosis upon the metabolism of calcium, phosphorus and nitrogen. Q J Med 1959; 28: 505-529

89. Bowman T, Whelan T, Nelson T. Sudden death after phosphorus burns: experimental observation of hypocalcemia, hyperphosphatemia and electrocardiographic abnormalities following production of a standart white phosphorus burns. Ann Surg 1971; 174: 779-784

90. Giebish G, Berger L, Pitts R. The extrarenal response to acute acid-base disturbances of respiratory origin. J Clin Investig 1955; 34: 237-245

91. O’Connor L, Klein L, Bethune J. Hyperphosphatemia in lactic acidosis. N Engl J Med 1977; 297: 707-709

92. Grossman R, Hamilton W, Morse B et al. Nontraumatic rhabdomyolysis and acute renal failure. N Engl J Med 1974; 291: 807-811

93. Koffler A, Fiedler R, Massry S. Acute renal failure due to nontraumatic rhabdomyolysis. Ann Intern Med 1976; 85: 23-28

94. Tanaka Y, Frank H, De Luca H. Intestinal calcium transport: stimulation by low phosphorus diets. Science 1973; 181: 564-6

95. Brereton H, Auderson T, Johnson R, Schein P. Hyperphosphatemia and hypocalcemia in Burkitt lymphoma. Arch Intern Med 1975; 135: 307-309

96. Zusman J, Broron D, Nesbit M. Hyperphosphatemia, hyperphosphaturia and hypocalcemia in acute lymphoblastic leukemia. N Engl J Med 1973; 289: 1335-1340

97. Miller W, Meyer W, Bartter F. Intermittent hyperphosphatemia, polyuria and seizures-a new familial disorders. J Pediatr 1975; 86: 233-235


Рецензия

Для цитирования:


Ермоленко В.М., Михайлова Н.А., Батэрдэнэ С. ФИЗИОЛОГИЯ И ПАТОФИЗИОЛОГИЯ ТРАНСПОРТА ФОСФАТА. Нефрология. 2007;11(3):12-20. https://doi.org/10.24884/1561-6274-2007-11-3-12-20

For citation:


Ermolenko V.M., Mikhajlova N.A., Baterdene S. THE PHYSIOLOGY AND PATHOPHYSIOLOGY OF PHOSPHATE TRANSPORT. Nephrology (Saint-Petersburg). 2007;11(3):12-20. (In Russ.) https://doi.org/10.24884/1561-6274-2007-11-3-12-20

Просмотров: 214


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)