Preview

Nephrology (Saint-Petersburg)

Advanced search

Nephroprotective effects of acizol on the background of cadmium sulphate intoxication

Abstract

THE AIM of the study was to explore some of the pathogenic mechanisms of renal function disturbances during long-term administration of cadmium sulfate and preventive effects of Acyzol - an antihypoxant and antioxidant drug. MATERIALS AND METHODS. The work was carried out on 60 male Wistar rats, divided into three groups: intact; control with insolated cadmium sulfate administration at a dose of 0.1 mg / kg body weight; studied - with prophylactic Acyzol administration on the background of cadmium salts intake at the same dosage. The urine-generatory renal function, sodium and urea concentration in kidney tissue layers and Na+/K+-ATPase activity were studied. RESULTS. In animals with cadmium sulphate introduction the increase in the spontaneous six-hour urine output and sodium excretion, caused by reducing of water and cation reabsorption, marked proteinuria were observed. These changes correlated with the reduce in sodium and urea concentrations in all the layers of the kidneys, which also corresponded to the decrease in activity of the enzyme - Na+/K+-ATPase in kidney tissue layers. Acyzol injections to the animals on the background of cadmium intoxication led to the decrease of the severity of tubular reabsorption disorders, some recovery in activity of Na+/K+-ATPase, marked reduction of proteinuria. In the histological picture the differences between the groups with the isolated administration of cadmium salts and combined administration of cadmium sulfate and Acyzol were presented by the decrease of the severity of all pathological processes manifestations. The number of the tubules with preserved lumen was increased. CONCLUSION. Thus, the positive effect of Acyzol, which led to the decrease of the severity of the structural and functional changes in the renal nephrons tubular unit became evident. In the basis of Acyzol protective effect, obviously, lied its antihypoxic effect, which decreased the tubular hypoxic damage, caused by heavy metals

About the Authors

R. I. Kokaev
North Ossetian State Medical Academy
Russian Federation


V. B. Brin
North Ossetian State Medical Academy
Russian Federation


References

1. Wang T, Wang Q, Song R et al. Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons. Neurotoxicol Teratol 2016; 53:11-18

2. Yuan XБ Jiang CXБ Xu H et al. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS One 2013; 8(5):e64330

3. Pinter TB, Stillman MJ. Kinetics of zinc and cadmium exchanges between metallothionein and carbonic anhydrase. Biochemistry 2015; 54(40):6284-6293

4. Merra E, Calzaretti G, Bobba A et al. Antioxidant role of hydroxytyrosol on oxidative stress in cadmium-intoxicated rats: different effect in spleen and testes. Drug Chem Toxicol 2014; 37(4):420-426

5. Cosic DD, Bulat ZP, Ninkovic M et al. Effect of subacute cadmium intoxication on iron and lipid peroxidation in mouse liver. Toxicol Lett 2007; 172: S209

6. Nazima B, Manoharan V, Miltonprabu S. Oxidative stress induced by cadmium in the plasma, erythrocytes and lymphocytes of rats: Attenuation by grape seed proanthocyanidins. Hum Exp Toxicol 2016; 35(4): 428-447

7. Брин ВБ, Кокаев РИ, Бабаниязов ХХ, Пронина НВ. Влияние ацизола на нефротоксическое действие соли кадмия у крыс. Кубанск науч мед вестн 2008; (5): 33-37

8. Mori H, Sasaki G, Nishikawa M, Hara M. Effects of subcytotoxic cadmium on morphology of glial fibrillary acidic protein network in astrocytes derived from murine neural stem/progenitor cells. Environ Toxicol Pharmacol 2015; 40(2): 639-644

9. Lee WK, Torchalski B, Thévenod F. Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Physiol Cell Physiol 2007; 293(3):839-847

10. Zhao H, Liu W, Wang Y et al. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways. J Vet Sci 2015; 16(3): 297-306

11. Reyes JL, Molina-Jijon E, Rodrfguez-Mufioz R et al. Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. Biomed Res Int 2013; 2013: 730789

12. Брин ВБ, Кокаев РИ, Бабаниязов ХХ, Пронина НВ. Возможности профилактики токсических эффектов кадмия металлокомплексом соли цинка - ацизолом. Вестн Нов Мед Техн 2008; 15 (4): 213-216

13. Брин ВБ, Бабаниязов ХХ, Кабисов ОТ и др. Влияние ацизола на показатели системной гемодинамики в условиях хронической свинцовой интоксикации. Вестн Нов Мед Техн 2008; 15 (3): 21-22


Review

For citations:


Kokaev R.I., Brin V.B. Nephroprotective effects of acizol on the background of cadmium sulphate intoxication. Nephrology (Saint-Petersburg). 2016;20(5):90-96. (In Russ.)

Views: 469


ISSN 1561-6274 (Print)
ISSN 2541-9439 (Online)