IMMUNE CELL SUBPOPULATIONS IN KIDNEY ALLOGRAFT GLOMERULITIS: COMPOSITION AND PROGNOSTIC SIGNIFICANCE
https://doi.org/10.24884/1561-6274-2017-21-6-29-38
Abstract
The Aim of the study was to assess the association of T-cell (CD3+), monocyte/macrophage (CD68+), B-cell (CD20+) infiltrates in glomeruli with long-term kidney allograft survival in patients with renal allograft (RA) glomerulitis.
Patients and methods. 97 RA recipients with biopsy-proven glomerulitis were enrolled in this retrospective study. 54,6% of patients were negative for donor-specific antibodies (DSA-) at the time of biopsy. DSA were detected in 25,8% of cases (DSA+). For 19,6% of patients DSA evaluation was unavailable at the time of biopsy. Morphological findings were assessed according to the Banff 2013 criteria. After immunohistochemical staining for CD68+, CD3+, CD20+ cells quantitative assay of positive cells in glomerular capillaries was performed. The Kaplan-Meier method and Cox proportional hazards regression model were used to evaluate the relationship between intraglomerular CD3+, CD68+, CD20+ cells and risk of RA loss.
Results. CD68+ and CD3+ cells were found in glomeruli in RA glomerulitis more frequently than CD20+ cells. The level of intraglomerular CD68+ cells was higher in DSA+ group (p = 0,005), there was no difference in the level of CD3+ and CD20+ cells between DSA subgroups. Infiltration of CD68+ ≥ 8 cells per glomerulus was associated with a lower RA survival (p log-rank = 0,019) as well as infiltration of CD3+ ≥ 1 cell per glomerulus (p log-rank = 0,029). The number of glomerular CD68+ (1 cell per glomerulus) was independent predictor of RA loss in multivariate Cox regression model (p ≤ 0,003).
Conclusion. RA glomerulitis could be realized by different immunological pathways including monocytes/macrophages actions that requires further investigations. Immunomorphological evaluation of immune cells subpopulations, in particular CD68+ cells, could be crucial for the evaluation of long-term RA prognosis and appropriate therapeutic approach.
About the Authors
M. S. KhrabrovaRussian Federation
Maria S. Khrabrova - MD, PhD., Department of Propedeutics of Internal Diseases Assistant prof.
197022, Saint-Petersburg, Str. Leo Tolstoy, 17 build 54, +7(812) 338-01-65
A. O. Mukhametdinova
Russian Federation
Anastasiya O. Muhametdinova.
197022, Saint-Petersburg, Str. Leo Tolstoy, 6/8
A. V. Nabokow
Germany
Dr. med. Alexander Nabokow - Dr. med., vice director.
34346, Hann.Muenden, Vogelsang, 105
H.-J. Gröne
Germany
Hermann-Josef Groene - Prof. Dr. med.
69120, Heidelberg, Im Neuenheimer Feld, 280
V. Kliem
Germany
Volker Kliem - Prof. Dr. med., director.
34346, Hann.Muenden, Vogelsang, 105
V. A. Dobronravov
Russian Federation
Prof. Vladimir A. Dobronravov - MD, PhD, DSci.
197022, Lva Tostogo str. 17
References
1. Sellares J, de Freitas DG, Mengel M et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant 2012;12(2):388-399. doi: 10.1111/j.1600-6143.2011.03840.x
2. Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: A critical reappraisal. Am J Transplant 2011;11(3):450-462. doi: 10.1111/j.1600-6143.2010.03283.x
3. Gaston RS, Cecka JM, Kasiske BL et al. Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure. Transplantation 2010;90(1):68-74. doi: 10.1097/TP.0b013e3181e065de
4. Loupy A, Haas M, Solez K et al. The Banff 2015 kidney meeting report: current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant 2017;17(1):28-41. doi: 10.1111/ajt.14107
5. Haas M, Sis B, Racusen LC, Solez K et al. Banff 2013 Meeting Report: Inclusion of C4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant 2014; 14: 272–283. doi: 10.1111/ajt.12590
6. Hidalgo LG, Campbell PM, Sis B et al. De novo donorspecific antibody at the time of kidney transplant biopsy associates with microvascular pathology and late graft failure. Am J Transplant 2009;9(11):2532-2541. doi: 10.1111/j.1600-6143.2009.02800.x
7. Trpkov K, Campbell P, Pazderka F et al. Pathologic features of acute renal allograft rejection associated with donor-specific antibody, Analysis using the Banff grading schema. Transplantation 1996;61(11):1586-1592
8. Zhang X, Reed EF. Effect of antibodies on endothelium. Am J Transplant 2009;9(11):2459-2465. doi: 10.1111/j.1600-6143.2009.02819.x
9. Magil AB. Infiltrating cell types in transplant glomerulitis: relationship to peritubular capillary C4d deposition. Am J Kidney Dis 2005;45(6):1084-1089. 10.1053/j.ajkd.2005.02.017
10. Fahim T, Böhmig GA, Exner M et al. The cellular lesion of humoral rejection: predominant recruitment of monocytes to peritubular and glomerular capillaries. Am J Transplant 2007;7(2):385-393. doi: 10.1111/j.1600-6143.2006.01634.x
11. Papadimitriou JC, Drachenberg CB, Munivenkatappa R et al. Glomerular inflammation in renal allografts biopsies after first year: cell types and relationship with antibody-mediated rejection and graft outcome. Transplantation 2010;90(12):1478-1485. doi: 10.1097/TP.0b013e3181ff87f5
12. Sicard A, Meas-Yedid V, Rabeyrin M et al. Computerassisted topological analysis of renal allograft inflammation adds to risk evaluation at diagnosis of humoral rejection. Kidney Int 2017;92(1):214-226. doi: 10.1016/j.kint.2017.01.011
13. Sentís A, Kers J, Yapici U et al. The prognostic significance of glomerular infiltrating leukocytes during acute renal allograft rejection. Transpl Immunol 2015;33(3):168-175. doi: 10.1016/j.trim.2015.10.004
14. Buob D, Grimbert P, Glowacki F et al. Three-year outcome of isolated glomerulitis on 3-month protocol biopsies of donor HLA antibody negative patients. Transpl Int 2012;25(6):663-670. doi: 10.1111/j.1432-2277.2012.01473.x
15. Batal I, Azzi J, El-Haddad N et al. Immunohistochemical markers of tissue injury in biopsies with transplant glomerulitis. Hum Pathol 2012;43(1):69-80. doi: 10.1016/j.humpath.2011.04.008
16. Batal I, Lunz JG, Aggarwal N et al. A critical appraisal of methods to grade transplant glomerulitis in renal allograft biopsies. Am J Transplant 2010;10(11):2442-2452. doi: 10.1111/j.1600-6143.2010.03261.x
17. Sis B, Jhangri GS, Riopel J et al. A new diagnostic algorithm for antibody-mediated microcirculation inflammation in kidney transplants. Am J Transplant 2012;12 (5):1168–1179. doi: 10.1111/j.1600-6143.2011.03931.x
18. Magil AB. Infiltrating cell types in transplant glomerulitis: relationship to peritubular capillary C4d deposition. Am J Kidney Dis 2005;45(6):1084-1089. 10.1053/j.ajkd.2005.02.017
19. Nabokow A, Dobronravov VA, Khrabrova M et al. Longterm kidney allograft survival in patients with transplant glomerulitis. Transplantation 2015;99(2):331-339. doi: 10.1097/TP.0000000000000606
20. Einecke G, Sis B, Reeve J et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. AmJTransplant 2009; 9(11):2520-2531. doi: 10.1111/j.1600-6143.2009.02799.x
21. Храброва МС, Добронравов ВА, Набоков АВ, Грене Х-Й и др. Прогноз выживаемости почечного трансплантата: иммунологические риски и тип отторжения. Нефрология 2015;19(4):41-50. [KhrabrovaMS, DobronravovVA, NabokovAV, GreneKhYidr. Prognoz vyzhivaemosti pochechnogo transplantata: immunologicheskie riski i tip ottorzheniya. Nefrologiya 2015;19(4):41-50]
22. Harvey BP, Gee RJ, Haberman AM et al. Antigen presentation and transfer between B cells and macrophages. Eur J Immunol 2007;37(7):1739-1751. doi: 10.1002/eji.200636452
23. Guilliams M, Bruhns P, Saeys Y et al. The function of Fcγ receptors in dendritic cells and macrophages. Rev Immunol 2014;14(2):94-108. doi: 10.1038/nri3582
24. Tinckam K, Djurdjev O, Magil AB. Glomerular monocytes predict worse outcomes after acute renal allograft rejection independent of C4d status. Kidney Int 2005;68(4):1866-1874. doi: 10.1111/j.1523-1755.2005.00606.x
25. Lee CY, Lotfi-Emran S, Erdinc M et al. The involvement of FcR mechanisms in antibody-mediated rejection. Transplantation 2007;84(10):1324–1334. doi: 10.1097/01.tp.0000287457.54761.53
26. Piotti G, Palmisano A, Maggiore U et al. Vascular endothelium as a target of immune response in renal transplant rejection. Front Immunol 2014;5:505. doi: 10.3389/fimmu.2014.00505
27. Kilgore KS, Schmid E, Shanley TP et al. Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol 1997;150(6):2019-2031
28. Batal I, De Serres SA, Mfarrej BG. Glomerular inflammation correlates with endothelial injury and with IL-6 and IL-1A secretion in the peripheral blood. Transplantation 2014;97(10):1034-1042. doi: 10.1097/01.TP.0000441096.22471.36
29. Valenzuela NM, Trinh KR, Mulder A et al. Monocyte recruitment by HLA IgG-activated endothelium: the relationship between IgG subclass and FcγRIIa polymorphisms. Am J Transplant 2015;15(6):1502-1518. doi: 10.1111/ajt.13174.
30. Valenzuela NM, Mulder A, Reed EF. HLA class I antibodies trigger increased adherence of monocytes to endothelial cells by eliciting an increase in endothelial P-selectin and, depending on subclass, by engaging FcgRs. J Immunol 2013;190(12):6635-6650. doi: 10.4049/jimmunol.1201434
31. Wyburn KR, Jose MD, Wu H et al. The role of macrophages in allograft rejection. Transplantation 2005;80(12):1641-1647. doi: 10.1097/01.tp.0000173903.26886.20
32. Hirohashi T, Chase CM, Della Pelle P et al. A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody. Am J Transplant 2012;12(2):313-321. doi: 10.1111/j.1600-6143.2011.03836.x
33. Yeap WH, Wong KL, Shimasaki N et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep 2016;6:34310. doi: 10.1038/srep34310
34. Lee S, Huen S, Nishio H et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 2011;22(2):317-326. doi: 10.1681/ASN.2009060615
35. Clements M, Gershenovich M, Chaber C et al. Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J Am Soc Nephrol 2016;27(1):159-170. doi: 10.1681/ASN.2014111138
36. Dragun D, Hoff U, Park JK et al. Ischemia-reperfusion injury in renal transplantation is independent of the immunologic background. Kidney Int 2000;58(5):2166-2177. doi: 10.1111/j.1523-1755.2000.00390.x
37. Ysebaert DK, De Greef KE, Vercauteren SR et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 2000;15(10):1562-1574. doi: 10.1093/ndt/15.10.1562
38. Zecher D, van Rooijen N, Rothstein DM et al. An innate response to allogeneic nonself mediated by monocytes. J Immunol 2009;183(12):7810-7816. doi: 10.4049/jimmunol.0902194
39. Oberbarnscheidt MH, Zeng Q, Li Q et al. Non-self recognition by monocytes initiates allograft rejection. J Clin Invest 2014;124(8):3579-3589. doi: 10.1172/JCI74370
40. Carlin LM, Stamatiades EG, Auffray C et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013;153(2):362-375. doi: 10.1016/j.cell.2013.03.010
41. Devi S, Li A, Westhorpe CL et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med 2013;19(1):107-112. doi: 10.1038/nm.3024
42. Finsterbusch M, Hall P, Li A et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc Natl Acad Sci U S A 2016;113(35):E5172-5181. doi: 10.1073/pnas.1606253113
43. Imhof BA, Jemelin S, Emre Y. Toll-like receptors elicit different recruitment kinetics of monocytes and neutrophils in mouse acute inflammation. Eur J Immunol 2017; 47(6):1002-1008. doi: 10.1002/eji.201746983
44. Vereyken EJ, Kraaij MD, Baan CC et al. A shift towards pro-inflammatory CD16+ monocyte subsets with preserved cytokine production potential after kidney transplantation. PLoS One 2013;8(7):e70152. doi: 10.1371/journal.pone.0070152
45. Nakatani K, Yoshimoto S, Iwano M et al. Fractalkine expression and CD16+ monocyte accumulation in glomerular lesions: association with their severity and diversity in lupus models. Am J Physiol Renal Physiol 2010;299(1):F207-F216. doi: 10.1152/ajprenal.00482.2009
46. Cros J, Cagnard N, Woollard K et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010;33(3):375-386. doi: 10.1016/j.immuni.2010.08.012
47. Smyth LA, Meader L, Xiao F et al. Constitutive expression of the anti-apoptotic Bcl-2 family member A1 in murine endothelial cells leads to transplant tolerance. Clin Exp Immunol 2017;188(2):219-225. doi: 10.1111/cei.12931.
48. Fuss A, Hope CM, Deayton S et al. C4d-negative antibodymediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies. Nephrology 2015;20:467–473. doi:10.1111/nep.12441
49. Reinsmoen NL, Lai CH, Heidecke H et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 2010;90(12):1473-1477. doi: 10.1097/TP.0b013e3181fd97f1
50. Dragun D, Muüller DN, Braäsen JH et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 2005;352(6):558–569. doi: 10.1056/NEJMoa035717.
51. Giral M, Foucher Y, Dufay A et al. Pretransplant sensitization against angiotensin II type 1 receptor is a risk factor for acute rejection and graft loss. Am J Transplant 2013;13(10):2567-2576. doi: 10.1111/ajt.12397
52. Banasik M, Boratynska M, Koscielska-Kasprzak K et al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transplant Immunol 2014;30:24–29. doi: 10.1016/j.trim.2013.10.007
53. Jackson AM, Sigdel TK, Delville M et al. Endothelial cell antibodies associated with novel targets and increased rejection. J Am Soc Nephrol 2015;26(5):1161-1171. doi: 10.1681/ASN.2013121277
54. Cardinal H, Dieudé M, Brassard N et al. Antiperlecan antibodies are novel accelerators of immune-mediated vascular injury. Am J Transplant 2013;13(4):861-874. doi: 10.1111/ajt.12168.
55. Yamani MH, Cook DJ, Tuzcu EM et al. Systemic up regulation of angiotensin II type 1 receptor in cardiac donors with spontaneous intracerebral hemorrhage. Am J Transplant 2004;4(7):1097-1102. doi: 10.1111/j.1600-6143.2004.00463.x
56. Lukitsch I, Kehr J, Chaykovska L et al. Renal ischemia and transplantation predispose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation 2012;94(1):8-13. doi: 10.1097/TP.0b013e3182529bb7
57. Buzas EI, György B, Nagy G et al. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 2014;10(6):356-364. doi: 10.1038/nrrheum.2014
58. Dieude M, Bell C, Turgeon J et al. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 2015;16;7(318):318ra200. doi: 10.1126/scitranslmed.aac9816
59. Kreisel D, Krupnick AS, Gelman AE et al. Non-hematopoietic allograft cells directly activate CD8+ T cells and trigger acute rejection: an alternative mechanism of allorecognition. Nat Med 2002;8(3):233-239. doi:10.1038/nm0302-233
60. Ishii D, Rosenblum JM, Nozaki T et al. Novel CD8 T cell alloreactivities in CCR5-deficient recipients of class II MHC disparate kidney grafts. J Immunol 2014;193(7):3816-3824. doi: 10.4049/jimmunol.1303256.
61. Banasik M, Boratynska M, Koscielska-Kasprzak K et al. The impact of non-HLA antibodies directed against endothelin-1 type A receptors (ETAR) on early renal transplant outcomes. Transplant Immunol 2014;30:24–29. doi: 10.1016/j.trim.2013.10.007
62. Hiemann NE, Meyer R, Wellnhofer E et al. Non-HLA antibodies targeting vascular receptors enhance alloimmune response and microvasculopathy after heart transplantation. Transplantation 2012;15;94(9):919-924. doi: 10.1097/TP.0b013e3182692ad2
63. Giral M1, Foucher Y, Dufay A et al. Pretransplant sensitization against angiotensin II type 1 receptor is a risk factor for acute rejection and graft loss. Am J Transplant 2013;13(10):2567-2576. doi: 10.1111/ajt.12397
64. Thaunat O, Graff-Dubois S, Brouard S et al. Immune responses elicited in tertiary lymphoid tissues display distinctive features. PLoS One 2010;5(6):e11398. doi: 10.1371/journal.pone.0011398
65. Thaunat O, Patey N, Caligiuri G et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J Immunol 2010;185(1):717-728. doi: 10.4049/jimmunol.0903589
66. Adeyi OA, Girnita AL, Howe J et al. Serum analysis after transplant nephrectomy reveals restricted antibody specificity patterns against structurally defined HLA class I mismatches. Transpl Immunol 2005; 14(1): 53-62. doi: 10.1016/j.trim.2005.01.001
67. Del Bello A, Congy-Jovilet N, Sallusto F et al. Donorspecific antibodies after ceasing immunosuppressive therapy, with or without an allograft nephrectomy. Clin J Am Soc Nephrol 2012; 7(8): 1310–1319. doi: 10.2215/CJN.00260112
68. Marrari M, Duquesnoy RJ. Detection of donor-specific HLA antibodies before and after removal of a rejected kidney transplant. TransplImmunol 2010;22(3-4):105-109. doi: 10.1016/j.trim.2009.12.005
Review
For citations:
Khrabrova M.S., Mukhametdinova A.O., Nabokow A.V., Gröne H., Kliem V., Dobronravov V.A. IMMUNE CELL SUBPOPULATIONS IN KIDNEY ALLOGRAFT GLOMERULITIS: COMPOSITION AND PROGNOSTIC SIGNIFICANCE. Nephrology (Saint-Petersburg). 2017;21(6):29-38. (In Russ.) https://doi.org/10.24884/1561-6274-2017-21-6-29-38